平行四边形教案人教版(必备18篇)
平行四边形教案人教版(1)
教学目标:
1、知识目标:
理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题、
2、能力目标:
通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想、
3、情感目标:
让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度、
教学重点:
平行四边形的性质
教学难点:
理解并应用平行四边形的性质
教学方法:
探究、启发式
教学过程
一、创设情景引入新课
通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习一下平行四边形。
二、判断图形,明确概念
通过一些图片的判断,让学生认识什么样的四边形是平行四边形。
然后让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:
三、平行四边形的画法
让学生自己在练习本上画出平行四边形,老师指导学生完成。
接着老师展示画平行四边形的步骤,并演示给学生看。
四、探究平行四边形的旋转
用一枚图钉在O点穿过,将平行四边形ABCD绕点O旋转180,观察旋转后的平行四边形ABCD与纸上画的平行四边形EFGH是否重合。
让学生讨论,得出结论,教师总结:我们发现,旋转之后的两个平行四边形完全重合,即平行四边形是中心对称图形,对角线的交点O就是对称中心。
五、例题与练习
1、例题1:
如图,已知平行四边形ABCD,∠A=40,求其他各个内角的度数。
思路导引:已知一个平行四边形与其中的一个角,由平行四边形的性质可得两邻角互补,
所以∠A+∠D=180,∠A+∠B=180,从而求出∠D和∠B,再求∠C。
2、例题2:已知在平行四边形ABCD中,AB=8,周长等于24,求其余三条边的长。
解:∵在平行四边形ABCD中,
AB=DC,AD=BC(平行四边形的对边相等)
又∵AB=8
AB+BC+CD+DA=24
∴CD=8,AD=BC=4
3、练习
1、在平行四边形ABCD中,已知AB=8,AO=3,∠ABC=50°
则CD=________,AC=________,
∠BAD=________,∠CDA=________
2、在平行四边形ABCD中,∠A+∠C=150°那么
∠A=__________,∠D=_________
3、在平行四边形ABCD中,∠A:∠B=4:5,那么
∠B=__________,∠C=_________
六、小结与作业
这节课你学到了什么?
1、平行四边形的概念
2、平行四边形的性质
3、运用性质解决问题
作业安排
作业
课本43页练习第1题和第2题
平行四边形教案人教版(2)
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.探索并掌握平行四边形的性质,并能简单应用;
教学重点:
平行四边形性质的探索。
教学难点:
平行四边形性质的理解。
教学方法:
自主学习,合作交流
教学过程:
(一) 问题导学
四边形和三角形一样,也是基本的平面图形,它都有哪些性质呢?应该从何处着手探索平行四边形的性质呢?
(二) 自主学习
2、教材导读
问题1首先让学生通过阅读课本内容动手拼一拼,并把重要的内容下面画上横线.
再次让学生按照导学案上的步骤在方格纸上画一画,
从而得出结论: 平行四边形的对边相等,对角相等.
注 意:表示平行四边形四个顶点的大写字母应顺时针或逆时针排列.
问题2首先让学生按照导学案提示操作,再次完成课本“做一做”.
从而得到结论: : 平行四边形的对边相等,对角相等.
2、自主测评
对“平行四边形的对边相等,对角相等”的性质进行检测。
注意:答题过程的书写。
3、收获与问题
整个自主学习的环节,学生有什么想法,可以发表自己的观点,教师并予以解决。
比如:为什么平行四边形的对边相等呢?
为什么任意一平行四边形都可以由两个全等三角形拼接而成?
(三)合作学习
此题组的设计就是让学生合作探究本节内容的难点,然后达成共识。
先由学生独立完成,再合作完成有争议的问题。
注 意:辩题设计第三题利用三角形的三边关系来做。
(四)探究展示
1、问题共析
此环节让学生将组内问题在全班展示,组组交流,教师点评。
2、展题设计
对本节内容难点的巩固,1题较为简单,是对平行四边形对边相等该性质的直接应用。
2题根据提示利用条件“DE平分∠ADC”和AD∥BC.
注 意:解题的书写格式。
(五)评价归纳
先让学生对着学案上的标题总结本节内容,然后自由发表观点,谈收获。
(六)深化拓展
此环节是对本节内容进行全面检测。试题分为三个层次:基础反思、能力提升、拓展创新。针对不同层次的学生有不同的要求。
平行四边形教案人教版(3)
一 教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二 重点、难点
1.重点:平行四边形的判定方法及应用.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
3.难点的突破方法:
平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.
(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:
①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;
②本节课只介绍前两个判定方法.
(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习,平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.
然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.
在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.
(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.
(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.
(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
三 例题的意图分析
本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的.思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四 课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 对角线互相平分的四边形是平行四边形
平行四边形教案人教版(4)
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习,平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:
(1)对边平行,
(2)对边相等,
(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
平行四边形教案人教版(5)
一、 教学目标:
1.掌握用一组对边平行且相等来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.
二、 重点、难点
1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
2.难点:平行四边形的判定定理与性质定理的综合应用.
三、例题的意图分析
本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.
四、课堂引入
1. 平行四边形的性质;
2. 平行四边形的判定方法;
3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
五、例习题分析
例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵ 四边形ABCD是平行四边形,
AD∥CB,AD=CD.
∵ E、F分别是AD、BC的中点,
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
BE=DF.
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.
分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
证明:∵ 四边形ABCD是平行四边形,
AB=CD,且AB∥CD.
BAE=DCF.
平行四边形教案人教版(6)
教学内容:课本第72页。
教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。
教学过程:
一、复习。
1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)
2.填空。
0.28平方米=()平方分米=()平方厘米
32000平方米=()公顷
0.5平方千米=()公顷。
3.求下面平行四边形的面积。(口答)
(1)底18厘米,高10厘米
(2)底25分米,高4分米
(3)底12.5米,高8米
(4)底16米,比高多6米
(5)底和高都是30厘米
二、新授。
1.揭示课题。
师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)
2.出示例题。
一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
学生口述解题思路:求钢板的面积就是求平行四边形的面积。
学生独立解答
4.8×3.5?17(平方米)
答:它的面积约是17平方米
补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?
总重量=每平方米重量×平方米数
学生试做。
集体评讲。
钢板重量:3.9×17=66.3(千克)
三、巩固练习。
1.P72页做一做。
通过书面练习第1题达到巩固求平行四边形面积的计算能力。
指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。
2.练习十七第6题。
先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)
学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)
得出:底和高分别相等的平行四边形,面积也相等。
判断:下面的平行四边形面积相等吗?
3.练习十七第7题。
学生独立完成。集体核对。
4.练习十七第8题。
先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。
四、作业。
练习十七第9题。
五、补充练习。
已知一个平行四边形的面积是28平方米,底是7米,求高是多少?
引导学生思考:因为:a·h=S
所以:h=S÷a
平行四边形教案人教版(7)
【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
【教学重点】
推导平行四边形面积计算公式。应用公式解决实际问题。
【教学难点】
理解平行四边形的面积计算公式的推导过程。
【教学准备】
平行四边形纸片若干,直尺、剪刀、。
【教学过程】
一、创设情境,激发兴趣。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习的平行四边形的面积是有价值的,从而诱发学习的欲望。】
二、组织探究,推导公式。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的'知识?
大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?
【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)
学生数方格并来验证自己的猜想。
【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)
能否将平行四边形转化成我们学过的图形再来进行计算呢?
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)
【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】
4、观察比较,推导公式。
剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?
小结: 长方形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
把平行四边形转化成长方形面积。(剪拼—转化)
然后找到转化前、后图形之间的联系。(寻找—联系)
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)
【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】
三、实践应用,解决问题。
1、解决实际问题
平行四边形花坛底是6米,高是4米,它的面积是多少?
2、出示如下图
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】
四、总结全课,拓展延伸。
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】
五、板书设计
平行四边形的面积
长 方 形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
平行四边形教案人教版(8)
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
(板书课题:平行四边形的面积)
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
平行四边形教案人教版(9)
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
一、导入新课
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习关于平行四边形面积的计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽 平行四边形的面积=底高
S=ah S=ah或S=ah
平行四边形教案人教版(10)
教材分析
“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础
学情分析
1.学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。
2.但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标
1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2.过程与方法目标:
(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。
(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点和难点
重点:理解掌握平行四边形的面积计算公式,并能正确运用。
难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学过程
(一)情境引入,以旧探新
这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)
这块花坛既不是长方形也不是正方形,如何求出这块地的面积?
为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习的平行四边形的面积。(板书:平行四边形的面积)
(二)自主探究
方法一:用数方格的方法求平行四边形的面积
以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)
1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。
根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!
2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。
(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)
(2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)
(三)动手操作,验证猜想,得出结论
方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。
1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)
(2)学生实验操作,教师巡视指导。
3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?
(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)
(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)
(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)
(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)
4.全班交流推导公式:
(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!
(2)有没有不同的剪拼方法?(继续请同学演示)。
研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。
(3)板书平行四边形面积推导过程
(4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah
三、运用公式,解决实际问题
知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
1.出示书上82页的1题,请大家做一做。
2.汇报交流:谁来说一说你是怎么做的?
3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)
四、巩固练习
1、试一试
计算下列平行四边形的面积,与同学说说你的方法。
35cm 20dm 4.8m
26cm 28dm 5m
公式: 公式: 公式:
列式: 列式: 列式:
2、我能填得准。
(1)平行四边形的面积公式用字母表示为( )。
(2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。
五、课堂总结
反思一下刚才我们的学习过程,你有什么收获?
平行四边形教案人教版(11)
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解平行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和平行四边形图片、剪刀、平行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)
出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究平行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
② 填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )
2、求平行四边形的面积必须知道平行四边形的( ) 和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各平行四边形的面积
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的平行四边形,不一定等底等高。
(2)画平行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,平行四边形面积就一定相等。
2.等底等高的平行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
平行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
平行四边形教案人教版(12)
教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感
教学重点:
让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
教学难点:
让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教学准备:
平行四边形卡片、剪刀、三角板
教学过程:
一、课前复习,回顾旧知
1、长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习的平行四边形面积公式做铺垫)
2、生:长方形面积=长×宽。
二、提出问题,导入新课
1、出示主题图:(看课本第86页的图)
(1)、发现了哪些图形?你会求哪些图形的面积?
(2)、故事引入
学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。
师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)
比较方法:
1、叠起来比;(比不了,形状不一样)
2、数方格比。
师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)
三、探索发现、推导公式
1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)
2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。
课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)
现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。
小组根据导学提纲进行合作学习
(1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)
(2)讨论:平行四边形转化成长方形后面积变了吗?
(3)讨论:转化成的长方形的长和平行四边形的底是否相等?
(4)讨论:转化成的长方形的宽和平行四边形的高是否相等?
3、学生操作验证
师:这个剪拼的任务就交给你们了。
4、交流汇报
(1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。
生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。
师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。
(2)面积没变,只是形状变了。
(3)长方形的长和平行四边形的底相等。
(4)长方形的宽和平行四边形的高相等。
(5)平行四边形的面积怎样算?
5、集体推导
齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)
一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。
板书:长方形的面积 = 长 X 宽
↓ ↓ ↓
平行四边形的面积 = 底 X 高
6、字母表示公式
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)
7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。
师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。
8、运用公式:学习88页例1
师:让我们回到学校门前的花坛吧。
出示题目,学生读题,学生口答,老师板书过程。
9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。
三、巩固拓展
1、课本89:第1题。(学生在练习本中解答)
2、口答:下面的平行四边形的面积是多少平方厘米?
3、选择题:(区分对应的底和高)
4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。
5、口答
(1)平行四边形的底不变,高扩大2倍,面积就( )。
(2)平行四边形的高不变,底缩小2倍,面积就( )。
(3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。
四、总结全课,提高认识
1、通过今天的学习,你有那些收获?还有那些遗憾的地方?
2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。
板书设计:
平行四边形的面积
长方形的面积 = 长×宽
↓ ↓ ↓
平行四边形的面积= 底×高
S = a×h
平行四边形教案人教版(13)
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形教案人教版(14)
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
平行四边形教案人教版(15)
[教学内容]
人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程
设计思路
一、以景置疑,引出课题
1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习的平行四边形的面积,板书课题。
以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的面积是一样的,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。
通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,()的面积大。
A、甲B、乙C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。
A、变大B、变小C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。
分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?
自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
平行四边形教案人教版(16)
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。
教学目标:
1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。
2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。
3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
教学重、难点:
让学生在观察、操作、交流等教学活动中认识平行四边形。
教具准备:
一个长方形方框,多媒体课件。
学具准备:
每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。
教学过程:
一、谈话引入
教师:同学们,在以前的学习中我们已经初步认识了平行四边形。实际上,在我们生活中也经常见到平行四边形。请看大屏幕。
(课件出示主题图)
请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。)
教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今天这节课老师就和同学们一起来进一步认识平行四边形。
板书课题:平行四边形
二、探究新知
1、认识平行四边形的特征
(1)教师:同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。
(教师出示一个长方形方框)这个图形大家认识吗?(它是长方形)
教师:对!这是一个长方形。老师握着这个长方形方框的两个对角,轻轻地拉一拉。变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形。
教师:你们想玩玩这个魔术吗?
(2)学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。
(3)师:同学们观察老师手里的平行四边形,同桌讨论你们发现了什么?
生1:对边平行
生2:对边相等
同学们真聪明,真能干通过观察发现了这么多!
同学们,这些发现对吗?现在我们来验证我们的发现,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。
汇报结果:对边平行
现在我们再来验证一下对边真的相等吗?应该怎样办呢?
生:测量平行四边形四条边的长度。
师:请拿出你们的直尺测量手中平行四边形四条边的长度。
汇报结果:对边相等
师:同学们,我们现在发现了平行四边形有两个特点,它们是什么呢?
(4)师:我们现在认识了平行四边形,也知道它的对边相等且平行。那么什么是平行四边形呢?
教师通过学生的回答引导出:对边平行的四边形,叫做平行四边形。
2、认识平行四边形的高
同学们真能干!这么快就知道了什么叫做平行四边形,现在我们来学习-平行四边形另外一个特征。请同学们拿出老师发的平行四边形跟老师做(折高)。
师:打开平行四边形,观察折痕有什么特点(垂直于边)
师:想一想什么叫做平行四边形的高?(从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.)教师:同学们,通过刚才折平行四边形的高,你有什么发现?
学生:我发现平行四边形的高有无数条。
教师:对!平行四边形有无数条高。
第99页第3题,学生独立完成之后全班交流,教师强调底与高的对应性。
师:引导认识底
3、引导学生认识长方形、正方形、平行四边形的关系
(1)完成表格
(2)归纳总结第98页课堂活动第1题
教师:请同学们想一想,到现在为止,我们都学习了哪些四边形?(长方形、正方形、平行四边形……)
教师:它们都有哪些地方一样呢?(它们都是对边相等,对边互相平行……)
教师:平行四边形的这些特征,长方形、正方形都具备。
我们通常说长方形、正方形是特殊的平行四边形。
长方形、正方形是特殊的平行四边形。平行四边形的对边平行且相等,具有不稳定性。
三、课堂小结
同学们,这节课你学到了哪些知识?能给大家讲讲吗?
平行四边形教案人教版(17)
教学内容:
教科书第14、15页的内容。
教学目标:
1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。
2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。
3、在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:
认识平行四边形。
教学难点:
感悟平行四边形的特征。
教学过程:
一、情境导入
同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。
二、自主探究
同学们在生活中见过这样的图形吗?在哪见过?
看,这是教师在生活中见到的四边形,你知道这是什么吗?
课件出示:教材第14页例2图
第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。
你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。
学生动手操作,尝试拼平行四边形,教师巡视指导。
组织交流,展示学生拼图结果,并让学生说说发现了什么?
(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)
老师边画平行四边形边指出:像这样的四边形叫做平行四边形。
三、巩固练习
1.“想想做做”第1题。学生独立完成,分小组讨论,汇报。
2.“想想做做”第2题。组织学生想一想,再围一围。
3.“想想做做”第3题,学生在书上描一描,教师巡视检查。
4.“想想做做”第4题,学生动手完成。
5. “想想做做”第5题,学生在家长的帮助下完成。
四、全课总结
提问:今天这节课你有什么收获?
平行四边形教案人教版(18)
人教版数学五年级上册《平行四边形的面积》教案
作为一名教师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?下面是小编为大家收集的人教版数学五年级上册《平行四边形的面积》教案,仅供参考,希望能够帮助到大家。
教材分析
“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础
学情分析
1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。
2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标
1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2.过程与方法目标:
(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。
(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点和难点
重点:理解掌握平行四边形的面积计算公式,并能正确运用。
难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学过程
(一)情境引入,以旧探新
这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)
这块花坛既不是长方形也不是正方形,如何求出这块地的面积?
为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学平行四边形的面积。(板书:平行四边形的面积)
(二)自主探究
方法一:用数方格的方法求平行四边形的面积
以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)
1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。
根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!
2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。
(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)
(2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)
(三)动手操作,验证猜想,得出结论
方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。
1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)
(2)学生实验操作,教师巡视指导。
3.小组讨论:观察拼出来的.长方形和原来的平行四边形你发现了什么?
(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)
(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)
(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)
(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)
4.全班交流推导公式:
(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!
(2)有没有不同的剪拼方法?(继续请同学演示)。
研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。
(3)板书平行四边形面积推导过程
(4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah
三、运用公式,解决实际问题
知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
1.出示书上82页的1题,请大家做一做。
2.汇报交流:谁来说一说你是怎么做的?
3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)
四、巩固练习
1、试一试
计算下列平行四边形的面积,与同学说说你的方法。
35cm 20dm 4.8m
26cm 28dm 5m
公式: 公式: 公式:
列式: 列式: 列式:
2、我能填得准。
(1)平行四边形的面积公式用字母表示为( )。
(2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。
五、课堂总结
反思一下刚才我们的学习过程,你有什么收获?