[go: up one dir, main page]

Skip to content

Latest commit

 

History

History
982 lines (684 loc) · 29 KB

plotting.rst

File metadata and controls

982 lines (684 loc) · 29 KB
.. currentmodule:: xarray

Plotting

Introduction

Labeled data enables expressive computations. These same labels can also be used to easily create informative plots.

xarray's plotting capabilities are centered around :py:class:`DataArray` objects. To plot :py:class:`Dataset` objects simply access the relevant DataArrays, i.e. dset['var1']. Dataset specific plotting routines are also available (see :ref:`plot-dataset`). Here we focus mostly on arrays 2d or larger. If your data fits nicely into a pandas DataFrame then you're better off using one of the more developed tools there.

xarray plotting functionality is a thin wrapper around the popular matplotlib library. Matplotlib syntax and function names were copied as much as possible, which makes for an easy transition between the two. Matplotlib must be installed before xarray can plot.

To use xarray's plotting capabilities with time coordinates containing cftime.datetime objects nc-time-axis v1.2.0 or later needs to be installed.

For more extensive plotting applications consider the following projects:

  • Seaborn: "provides a high-level interface for drawing attractive statistical graphics." Integrates well with pandas.
  • HoloViews and GeoViews: "Composable, declarative data structures for building even complex visualizations easily." Includes native support for xarray objects.
  • hvplot: hvplot makes it very easy to produce dynamic plots (backed by Holoviews or Geoviews) by adding a hvplot accessor to DataArrays.
  • Cartopy: Provides cartographic tools.

Imports

.. ipython:: python
    :suppress:

    # Use defaults so we don't get gridlines in generated docs
    import matplotlib as mpl

    mpl.rcdefaults()

The following imports are necessary for all of the examples.

.. ipython:: python

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import xarray as xr

For these examples we'll use the North American air temperature dataset.

.. ipython:: python

    airtemps = xr.tutorial.open_dataset("air_temperature")
    airtemps

    # Convert to celsius
    air = airtemps.air - 273.15

    # copy attributes to get nice figure labels and change Kelvin to Celsius
    air.attrs = airtemps.air.attrs
    air.attrs["units"] = "deg C"

Note

Until :issue:`1614` is solved, you might need to copy over the metadata in attrs to get informative figure labels (as was done above).

DataArrays

One Dimension

Simple Example

The simplest way to make a plot is to call the :py:func:`DataArray.plot()` method.

.. ipython:: python
    :okwarning:

    air1d = air.isel(lat=10, lon=10)

    @savefig plotting_1d_simple.png width=4in
    air1d.plot()

xarray uses the coordinate name along with metadata attrs.long_name, attrs.standard_name, DataArray.name and attrs.units (if available) to label the axes. The names long_name, standard_name and units are copied from the CF-conventions spec. When choosing names, the order of precedence is long_name, standard_name and finally DataArray.name. The y-axis label in the above plot was constructed from the long_name and units attributes of air1d.

.. ipython:: python

    air1d.attrs

Additional Arguments

Additional arguments are passed directly to the matplotlib function which does the work. For example, :py:func:`xarray.plot.line` calls matplotlib.pyplot.plot passing in the index and the array values as x and y, respectively. So to make a line plot with blue triangles a matplotlib format string can be used:

.. ipython:: python
    :okwarning:

    @savefig plotting_1d_additional_args.png width=4in
    air1d[:200].plot.line("b-^")

Note

Not all xarray plotting methods support passing positional arguments to the wrapped matplotlib functions, but they do all support keyword arguments.

Keyword arguments work the same way, and are more explicit.

.. ipython:: python
    :okwarning:

    @savefig plotting_example_sin3.png width=4in
    air1d[:200].plot.line(color="purple", marker="o")

Adding to Existing Axis

To add the plot to an existing axis pass in the axis as a keyword argument ax. This works for all xarray plotting methods. In this example axes is an array consisting of the left and right axes created by plt.subplots.

.. ipython:: python
    :okwarning:

    fig, axes = plt.subplots(ncols=2)

    axes

    air1d.plot(ax=axes[0])
    air1d.plot.hist(ax=axes[1])

    plt.tight_layout()

    @savefig plotting_example_existing_axes.png width=6in
    plt.draw()

On the right is a histogram created by :py:func:`xarray.plot.hist`.

Controlling the figure size

You can pass a figsize argument to all xarray's plotting methods to control the figure size. For convenience, xarray's plotting methods also support the aspect and size arguments which control the size of the resulting image via the formula figsize = (aspect * size, size):

.. ipython:: python
    :okwarning:

    air1d.plot(aspect=2, size=3)
    @savefig plotting_example_size_and_aspect.png
    plt.tight_layout()

.. ipython:: python
    :suppress:

    # create a dummy figure so sphinx plots everything below normally
    plt.figure()

This feature also works with :ref:`plotting.faceting`. For facet plots, size and aspect refer to a single panel (so that aspect * size gives the width of each facet in inches), while figsize refers to the entire figure (as for matplotlib's figsize argument).

Note

If figsize or size are used, a new figure is created, so this is mutually exclusive with the ax argument.

Note

The convention used by xarray (figsize = (aspect * size, size)) is borrowed from seaborn: it is therefore not equivalent to matplotlib's.

Determine x-axis values

Per default dimension coordinates are used for the x-axis (here the time coordinates). However, you can also use non-dimension coordinates, MultiIndex levels, and dimensions without coordinates along the x-axis. To illustrate this, let's calculate a 'decimal day' (epoch) from the time and assign it as a non-dimension coordinate:

.. ipython:: python
    :okwarning:

    decimal_day = (air1d.time - air1d.time[0]) / pd.Timedelta("1d")
    air1d_multi = air1d.assign_coords(decimal_day=("time", decimal_day.data))
    air1d_multi

To use 'decimal_day' as x coordinate it must be explicitly specified:

.. ipython:: python
    :okwarning:

    air1d_multi.plot(x="decimal_day")

Creating a new MultiIndex named 'date' from 'time' and 'decimal_day', it is also possible to use a MultiIndex level as x-axis:

.. ipython:: python
    :okwarning:

    air1d_multi = air1d_multi.set_index(date=("time", "decimal_day"))
    air1d_multi.plot(x="decimal_day")

Finally, if a dataset does not have any coordinates it enumerates all data points:

.. ipython:: python
    :okwarning:

    air1d_multi = air1d_multi.drop("date")
    air1d_multi.plot()

The same applies to 2D plots below.

Multiple lines showing variation along a dimension

It is possible to make line plots of two-dimensional data by calling :py:func:`xarray.plot.line` with appropriate arguments. Consider the 3D variable air defined above. We can use line plots to check the variation of air temperature at three different latitudes along a longitude line:

.. ipython:: python
    :okwarning:

    @savefig plotting_example_multiple_lines_x_kwarg.png
    air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time")

It is required to explicitly specify either

  1. x: the dimension to be used for the x-axis, or
  2. hue: the dimension you want to represent by multiple lines.

Thus, we could have made the previous plot by specifying hue='lat' instead of x='time'. If required, the automatic legend can be turned off using add_legend=False. Alternatively, hue can be passed directly to :py:func:`xarray.plot.line` as air.isel(lon=10, lat=[19,21,22]).plot.line(hue='lat').

Dimension along y-axis

It is also possible to make line plots such that the data are on the x-axis and a dimension is on the y-axis. This can be done by specifying the appropriate y keyword argument.

.. ipython:: python
    :okwarning:

    @savefig plotting_example_xy_kwarg.png
    air.isel(time=10, lon=[10, 11]).plot(y="lat", hue="lon")

Step plots

As an alternative, also a step plot similar to matplotlib's plt.step can be made using 1D data.

.. ipython:: python
    :okwarning:

    @savefig plotting_example_step.png width=4in
    air1d[:20].plot.step(where="mid")

The argument where defines where the steps should be placed, options are 'pre' (default), 'post', and 'mid'. This is particularly handy when plotting data grouped with :py:meth:`Dataset.groupby_bins`.

.. ipython:: python
    :okwarning:

    air_grp = air.mean(["time", "lon"]).groupby_bins("lat", [0, 23.5, 66.5, 90])
    air_mean = air_grp.mean()
    air_std = air_grp.std()
    air_mean.plot.step()
    (air_mean + air_std).plot.step(ls=":")
    (air_mean - air_std).plot.step(ls=":")
    plt.ylim(-20, 30)
    @savefig plotting_example_step_groupby.png width=4in
    plt.title("Zonal mean temperature")

In this case, the actual boundaries of the bins are used and the where argument is ignored.

Other axes kwargs

The keyword arguments xincrease and yincrease let you control the axes direction.

.. ipython:: python
    :okwarning:

    @savefig plotting_example_xincrease_yincrease_kwarg.png
    air.isel(time=10, lon=[10, 11]).plot.line(
        y="lat", hue="lon", xincrease=False, yincrease=False
    )

In addition, one can use xscale, yscale to set axes scaling; xticks, yticks to set axes ticks and xlim, ylim to set axes limits. These accept the same values as the matplotlib methods Axes.set_(x,y)scale(), Axes.set_(x,y)ticks(), Axes.set_(x,y)lim() respectively.

Two Dimensions

Simple Example

The default method :py:meth:`DataArray.plot` calls :py:func:`xarray.plot.pcolormesh` by default when the data is two-dimensional.

.. ipython:: python
    :okwarning:

    air2d = air.isel(time=500)

    @savefig 2d_simple.png width=4in
    air2d.plot()

All 2d plots in xarray allow the use of the keyword arguments yincrease and xincrease.

.. ipython:: python
    :okwarning:

    @savefig 2d_simple_yincrease.png width=4in
    air2d.plot(yincrease=False)

Note

We use :py:func:`xarray.plot.pcolormesh` as the default two-dimensional plot method because it is more flexible than :py:func:`xarray.plot.imshow`. However, for large arrays, imshow can be much faster than pcolormesh. If speed is important to you and you are plotting a regular mesh, consider using imshow.

Missing Values

xarray plots data with :ref:`missing_values`.

.. ipython:: python
    :okwarning:

    bad_air2d = air2d.copy()

    bad_air2d[dict(lat=slice(0, 10), lon=slice(0, 25))] = np.nan

    @savefig plotting_missing_values.png width=4in
    bad_air2d.plot()

Nonuniform Coordinates

It's not necessary for the coordinates to be evenly spaced. Both :py:func:`xarray.plot.pcolormesh` (default) and :py:func:`xarray.plot.contourf` can produce plots with nonuniform coordinates.

.. ipython:: python
    :okwarning:

    b = air2d.copy()
    # Apply a nonlinear transformation to one of the coords
    b.coords["lat"] = np.log(b.coords["lat"])

    @savefig plotting_nonuniform_coords.png width=4in
    b.plot()

Calling Matplotlib

Since this is a thin wrapper around matplotlib, all the functionality of matplotlib is available.

.. ipython:: python
    :okwarning:

    air2d.plot(cmap=plt.cm.Blues)
    plt.title("These colors prove North America\nhas fallen in the ocean")
    plt.ylabel("latitude")
    plt.xlabel("longitude")
    plt.tight_layout()

    @savefig plotting_2d_call_matplotlib.png width=4in
    plt.draw()

Note

xarray methods update label information and generally play around with the axes. So any kind of updates to the plot should be done after the call to the xarray's plot. In the example below, plt.xlabel effectively does nothing, since d_ylog.plot() updates the xlabel.

.. ipython:: python
    :okwarning:

    plt.xlabel("Never gonna see this.")
    air2d.plot()

    @savefig plotting_2d_call_matplotlib2.png width=4in
    plt.draw()
Colormaps

xarray borrows logic from Seaborn to infer what kind of color map to use. For example, consider the original data in Kelvins rather than Celsius:

.. ipython:: python
    :okwarning:

    @savefig plotting_kelvin.png width=4in
    airtemps.air.isel(time=0).plot()

The Celsius data contain 0, so a diverging color map was used. The Kelvins do not have 0, so the default color map was used.

Robust

Outliers often have an extreme effect on the output of the plot. Here we add two bad data points. This affects the color scale, washing out the plot.

.. ipython:: python
    :okwarning:

    air_outliers = airtemps.air.isel(time=0).copy()
    air_outliers[0, 0] = 100
    air_outliers[-1, -1] = 400

    @savefig plotting_robust1.png width=4in
    air_outliers.plot()

This plot shows that we have outliers. The easy way to visualize the data without the outliers is to pass the parameter robust=True. This will use the 2nd and 98th percentiles of the data to compute the color limits.

.. ipython:: python
    :okwarning:

    @savefig plotting_robust2.png width=4in
    air_outliers.plot(robust=True)

Observe that the ranges of the color bar have changed. The arrows on the color bar indicate that the colors include data points outside the bounds.

Discrete Colormaps

It is often useful, when visualizing 2d data, to use a discrete colormap, rather than the default continuous colormaps that matplotlib uses. The levels keyword argument can be used to generate plots with discrete colormaps. For example, to make a plot with 8 discrete color intervals:

.. ipython:: python
    :okwarning:

    @savefig plotting_discrete_levels.png width=4in
    air2d.plot(levels=8)

It is also possible to use a list of levels to specify the boundaries of the discrete colormap:

.. ipython:: python
    :okwarning:

    @savefig plotting_listed_levels.png width=4in
    air2d.plot(levels=[0, 12, 18, 30])

You can also specify a list of discrete colors through the colors argument:

.. ipython:: python
    :okwarning:

    flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
    @savefig plotting_custom_colors_levels.png width=4in
    air2d.plot(levels=[0, 12, 18, 30], colors=flatui)

Finally, if you have Seaborn installed, you can also specify a seaborn color palette to the cmap argument. Note that levels must be specified with seaborn color palettes if using imshow or pcolormesh (but not with contour or contourf, since levels are chosen automatically).

.. ipython:: python
    :okwarning:

    @savefig plotting_seaborn_palette.png width=4in
    air2d.plot(levels=10, cmap="husl")
    plt.draw()

Faceting

Faceting here refers to splitting an array along one or two dimensions and plotting each group. xarray's basic plotting is useful for plotting two dimensional arrays. What about three or four dimensional arrays? That's where facets become helpful. The general approach to plotting here is called “small multiples”, where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one ore more other variables is often called a “trellis plot”.

Consider the temperature data set. There are 4 observations per day for two years which makes for 2920 values along the time dimension. One way to visualize this data is to make a separate plot for each time period.

The faceted dimension should not have too many values; faceting on the time dimension will produce 2920 plots. That's too much to be helpful. To handle this situation try performing an operation that reduces the size of the data in some way. For example, we could compute the average air temperature for each month and reduce the size of this dimension from 2920 -> 12. A simpler way is to just take a slice on that dimension. So let's use a slice to pick 6 times throughout the first year.

.. ipython:: python

    t = air.isel(time=slice(0, 365 * 4, 250))
    t.coords

Simple Example

The easiest way to create faceted plots is to pass in row or col arguments to the xarray plotting methods/functions. This returns a :py:class:`xarray.plot.FacetGrid` object.

.. ipython:: python
    :okwarning:

    @savefig plot_facet_dataarray.png
    g_simple = t.plot(x="lon", y="lat", col="time", col_wrap=3)

Faceting also works for line plots.

.. ipython:: python
    :okwarning:

    @savefig plot_facet_dataarray_line.png
    g_simple_line = t.isel(lat=slice(0, None, 4)).plot(
        x="lon", hue="lat", col="time", col_wrap=3
    )

4 dimensional

For 4 dimensional arrays we can use the rows and columns of the grids. Here we create a 4 dimensional array by taking the original data and adding a fixed amount. Now we can see how the temperature maps would compare if one were much hotter.

.. ipython:: python
    :okwarning:

    t2 = t.isel(time=slice(0, 2))
    t4d = xr.concat([t2, t2 + 40], pd.Index(["normal", "hot"], name="fourth_dim"))
    # This is a 4d array
    t4d.coords

    @savefig plot_facet_4d.png
    t4d.plot(x="lon", y="lat", col="time", row="fourth_dim")

Other features

Faceted plotting supports other arguments common to xarray 2d plots.

.. ipython:: python
    :suppress:

    plt.close("all")

.. ipython:: python
    :okwarning:

    hasoutliers = t.isel(time=slice(0, 5)).copy()
    hasoutliers[0, 0, 0] = -100
    hasoutliers[-1, -1, -1] = 400

    @savefig plot_facet_robust.png
    g = hasoutliers.plot.pcolormesh(
        "lon",
        "lat",
        col="time",
        col_wrap=3,
        robust=True,
        cmap="viridis",
        cbar_kwargs={"label": "this has outliers"},
    )

FacetGrid Objects

The object returned, g in the above examples, is a :py:class:`~xarray.plot.FacetGrid` object that links a :py:class:`DataArray` to a matplotlib figure with a particular structure. This object can be used to control the behavior of the multiple plots. It borrows an API and code from Seaborn's FacetGrid. The structure is contained within the axes and name_dicts attributes, both 2d Numpy object arrays.

.. ipython:: python

    g.axes

    g.name_dicts

It's possible to select the :py:class:`xarray.DataArray` or :py:class:`xarray.Dataset` corresponding to the FacetGrid through the name_dicts.

.. ipython:: python

    g.data.loc[g.name_dicts[0, 0]]

Here is an example of using the lower level API and then modifying the axes after they have been plotted.

.. ipython:: python
    :okwarning:

    g = t.plot.imshow("lon", "lat", col="time", col_wrap=3, robust=True)

    for i, ax in enumerate(g.axes.flat):
        ax.set_title("Air Temperature %d" % i)

    bottomright = g.axes[-1, -1]
    bottomright.annotate("bottom right", (240, 40))

    @savefig plot_facet_iterator.png
    plt.draw()


:py:class:`~xarray.plot.FacetGrid` objects have methods that let you customize the automatically generated axis labels, axis ticks and plot titles. See :py:meth:`~xarray.plot.FacetGrid.set_titles`, :py:meth:`~xarray.plot.FacetGrid.set_xlabels`, :py:meth:`~xarray.plot.FacetGrid.set_ylabels` and :py:meth:`~xarray.plot.FacetGrid.set_ticks` for more information. Plotting functions can be applied to each subset of the data by calling :py:meth:`~xarray.plot.FacetGrid.map_dataarray` or to each subplot by calling :py:meth:`~xarray.plot.FacetGrid.map`.

TODO: add an example of using the map method to plot dataset variables (e.g., with plt.quiver).

Datasets

xarray has limited support for plotting Dataset variables against each other. Consider this dataset

.. ipython:: python

    ds = xr.tutorial.scatter_example_dataset()
    ds


Scatter

Suppose we want to scatter A against B

.. ipython:: python
    :okwarning:

    @savefig ds_simple_scatter.png
    ds.plot.scatter(x="A", y="B")

The hue kwarg lets you vary the color by variable value

.. ipython:: python
    :okwarning:

    @savefig ds_hue_scatter.png
    ds.plot.scatter(x="A", y="B", hue="w")

When hue is specified, a colorbar is added for numeric hue DataArrays by default and a legend is added for non-numeric hue DataArrays (as above). You can force a legend instead of a colorbar by setting hue_style='discrete'. Additionally, the boolean kwarg add_guide can be used to prevent the display of a legend or colorbar (as appropriate).

.. ipython:: python
    :okwarning:

    ds = ds.assign(w=[1, 2, 3, 5])
    @savefig ds_discrete_legend_hue_scatter.png
    ds.plot.scatter(x="A", y="B", hue="w", hue_style="discrete")

The markersize kwarg lets you vary the point's size by variable value. You can additionally pass size_norm to control how the variable's values are mapped to point sizes.

.. ipython:: python
    :okwarning:

    @savefig ds_hue_size_scatter.png
    ds.plot.scatter(x="A", y="B", hue="z", hue_style="discrete", markersize="z")

Faceting is also possible

.. ipython:: python
    :okwarning:

    @savefig ds_facet_scatter.png
    ds.plot.scatter(x="A", y="B", col="x", row="z", hue="w", hue_style="discrete")


For more advanced scatter plots, we recommend converting the relevant data variables to a pandas DataFrame and using the extensive plotting capabilities of seaborn.

Quiver

Visualizing vector fields is supported with quiver plots:

.. ipython:: python
    :okwarning:

    @savefig ds_simple_quiver.png
    ds.isel(w=1, z=1).plot.quiver(x="x", y="y", u="A", v="B")


where u and v denote the x and y direction components of the arrow vectors. Again, faceting is also possible:

.. ipython:: python
    :okwarning:

    @savefig ds_facet_quiver.png
    ds.plot.quiver(x="x", y="y", u="A", v="B", col="w", row="z", scale=4)

scale is required for faceted quiver plots. The scale determines the number of data units per arrow length unit, i.e. a smaller scale parameter makes the arrow longer.

Maps

To follow this section you'll need to have Cartopy installed and working.

This script will plot the air temperature on a map.

.. ipython:: python
    :okwarning:

    import cartopy.crs as ccrs

    air = xr.tutorial.open_dataset("air_temperature").air

    p = air.isel(time=0).plot(
        subplot_kws=dict(projection=ccrs.Orthographic(-80, 35), facecolor="gray"),
        transform=ccrs.PlateCarree(),
    )
    p.axes.set_global()

    @savefig plotting_maps_cartopy.png width=100%
    p.axes.coastlines()

When faceting on maps, the projection can be transferred to the plot function using the subplot_kws keyword. The axes for the subplots created by faceting are accessible in the object returned by plot:

.. ipython:: python
    :okwarning:

    p = air.isel(time=[0, 4]).plot(
        transform=ccrs.PlateCarree(),
        col="time",
        subplot_kws={"projection": ccrs.Orthographic(-80, 35)},
    )
    for ax in p.axes.flat:
        ax.coastlines()
        ax.gridlines()
    @savefig plotting_maps_cartopy_facetting.png width=100%
    plt.draw()


Details

Ways to Use

There are three ways to use the xarray plotting functionality:

  1. Use plot as a convenience method for a DataArray.
  2. Access a specific plotting method from the plot attribute of a DataArray.
  3. Directly from the xarray plot submodule.

These are provided for user convenience; they all call the same code.

.. ipython:: python
    :okwarning:

    import xarray.plot as xplt

    da = xr.DataArray(range(5))
    fig, axes = plt.subplots(ncols=2, nrows=2)
    da.plot(ax=axes[0, 0])
    da.plot.line(ax=axes[0, 1])
    xplt.plot(da, ax=axes[1, 0])
    xplt.line(da, ax=axes[1, 1])
    plt.tight_layout()
    @savefig plotting_ways_to_use.png width=6in
    plt.draw()

Here the output is the same. Since the data is 1 dimensional the line plot was used.

The convenience method :py:meth:`xarray.DataArray.plot` dispatches to an appropriate plotting function based on the dimensions of the DataArray and whether the coordinates are sorted and uniformly spaced. This table describes what gets plotted:

Dimensions Plotting function
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`

Coordinates

If you'd like to find out what's really going on in the coordinate system, read on.

.. ipython:: python

    a0 = xr.DataArray(np.zeros((4, 3, 2)), dims=("y", "x", "z"), name="temperature")
    a0[0, 0, 0] = 1
    a = a0.isel(z=0)
    a

The plot will produce an image corresponding to the values of the array. Hence the top left pixel will be a different color than the others. Before reading on, you may want to look at the coordinates and think carefully about what the limits, labels, and orientation for each of the axes should be.

.. ipython:: python
    :okwarning:

    @savefig plotting_example_2d_simple.png width=4in
    a.plot()

It may seem strange that the values on the y axis are decreasing with -0.5 on the top. This is because the pixels are centered over their coordinates, and the axis labels and ranges correspond to the values of the coordinates.

Multidimensional coordinates

See also: :ref:`/examples/multidimensional-coords.ipynb`.

You can plot irregular grids defined by multidimensional coordinates with xarray, but you'll have to tell the plot function to use these coordinates instead of the default ones:

.. ipython:: python
    :okwarning:

    lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4))
    lon += lat / 10
    lat += lon / 10
    da = xr.DataArray(
        np.arange(20).reshape(4, 5),
        dims=["y", "x"],
        coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)},
    )

    @savefig plotting_example_2d_irreg.png width=4in
    da.plot.pcolormesh("lon", "lat")

Note that in this case, xarray still follows the pixel centered convention. This might be undesirable in some cases, for example when your data is defined on a polar projection (:issue:`781`). This is why the default is to not follow this convention when plotting on a map:

.. ipython:: python
    :okwarning:

    import cartopy.crs as ccrs

    ax = plt.subplot(projection=ccrs.PlateCarree())
    da.plot.pcolormesh("lon", "lat", ax=ax)
    ax.scatter(lon, lat, transform=ccrs.PlateCarree())
    ax.coastlines()
    @savefig plotting_example_2d_irreg_map.png width=4in
    ax.gridlines(draw_labels=True)

You can however decide to infer the cell boundaries and use the infer_intervals keyword:

.. ipython:: python
    :okwarning:

    ax = plt.subplot(projection=ccrs.PlateCarree())
    da.plot.pcolormesh("lon", "lat", ax=ax, infer_intervals=True)
    ax.scatter(lon, lat, transform=ccrs.PlateCarree())
    ax.coastlines()
    @savefig plotting_example_2d_irreg_map_infer.png width=4in
    ax.gridlines(draw_labels=True)

Note

The data model of xarray does not support datasets with cell boundaries yet. If you want to use these coordinates, you'll have to make the plots outside the xarray framework.

One can also make line plots with multidimensional coordinates. In this case, hue must be a dimension name, not a coordinate name.

.. ipython:: python
    :okwarning:

    f, ax = plt.subplots(2, 1)
    da.plot.line(x="lon", hue="y", ax=ax[0])
    @savefig plotting_example_2d_hue_xy.png
    da.plot.line(x="lon", hue="x", ax=ax[1])