-
Notifications
You must be signed in to change notification settings - Fork 4
/
tutte-berge.proof
119 lines (101 loc) · 4.4 KB
/
tutte-berge.proof
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
Definition. $mm(G) := $ size of a maximum matching.
Definition. $df(S) := \#($odd connected components of $G\setminus S) - |S|$.
Definition. $df(G) := \max_{S \subseteq V} df(S)$.
Theorem. (Tutte and Berge's formula) $df(G) = |V| - 2mm(G)$
{
Proof.
$\leq$
{
Let $S$ be such that $df(S) = df(G)$.
Let $M$ be a maximum matching.
$|V| - 2mm(G)$ is the number of unmatched vertices of $M$.
$M$ leaves at least $df(S)$ vertices unmatched.
{
At worst, $M$ matches each vertex of $S$ with a vertex from a different odd components of $V \setminus S$.
asciiart {
╭━━━━━━━╮
| . . . | S
╰━┼━┼━┼━╯
│ │ │
╭━━╯ │ ╰╮
│ ╭╯ │
│ │ │
/-\ /-\ /+\ /+\ /+\ /-\ /-\ /-\
| | | | |.| |.| |.| | | | | | |
| | | | | | | | | | | | | | | |
\-/ \-/ \-/ \-/ \-/ \-/ \-/ \-/
\ / \ /
------------------- ---------
odd components event components
of G \ S of G \ S
}
}
}
$\geq$
{
All the $df(S)$ have the same parity. (parity)
{
For all $S \subseteq V$, $df(S) \equiv |V|$ mod 2.
{
$df(S) := \#($odd connected components of $G\setminus S) - |S|$
$\equiv \sum_{C component of G \setminus S} |C| - |S|$ mod 2
$\equiv |V|$ mod 2
}
}
Let $S$ be such $df(S) = df(G)$ with $|S|$ maximal. (1)
All connected components of $G \setminus S$ are odd. (obs2)
{
By contradiction. Suppose that there is an even component $C$.
Let $u$ a vertex in $C$.
Let $S' := S \cup \{u\}$.
$|S'| = |S| + 1$ (2)
$df(S') = df(G)$ (3)
{
$G \setminus S'$ has one more odd component than $G \setminus S$.
}
Contradiction by (1, 2, 3)
}
For all $C$ components of $G \setminus S$ and $u \in C$, we have $df(C - c) = 0$. (obs3)
{
By contradiction. Suppose that there is $T \subseteq C-u$ suchthat $C-u-T$ has strictly more than $|T|$ odd components.
Let $S' := S \cup \{u\} \cup T$.
$|S'| = |S| + 1 + |T|$
$\#odd(G-S') \geq \#odd(G-S)-1 + |T|+1 = \#odd(G-S)+|T|$
$df(S') = \#odd(G-S')-|S'| \geq \#odd(G-S)-|S|-1 = df(S)-1$
$df(S') = df(S)$ by (1)
}
Definition. We define $H$ to be the bipartite graph with sides $S$ and the set of components $C$ of $G-S$, and a vertex $u$ in $S$ and a component $C$ are adjacent if $u$ has a neighbor in $C$.
$H$ has a matching that saturates $S$ (obs4)
{
Check the condition of Hall's theorem.
{
Prove that for all $X \subseteq S$, we have $|X| \leq N_H(X)$.
{
By contradiction, suppose there is a $X\subseteq S$, we have $|X| > N_H(X)$.
Let $S' := S \setminus X$.
$|S'| = |S| - |X|$
$df(S') > df(S)$
{
Because $\#odd(G-S') \geq \#odd(G-S) - |N_H(X)|$.
}
Contradiction
}
}
}
Proof of Tutte-Berge formula
{
By induction on |V|.
Base case |V| = 0 is ok.
Induction step.
{
Suppose the induction hypothesis. (inductionhyp)
Let $S$ := maximum set of maximum deficit
For all components $C$, for all $u \in C$, $C-u$ has a perfect matching. by (obs2,obs3,inductionhyp)
Construct a matching $M$:
- Lift the matching from $H$ that saturates $S$ by (obs4)
- Get a perfect matching for all components $C$ for all $u \in C$.
The number of unmatched vertex is $df(S) = df(G)$.
}
}
}
}