[go: up one dir, main page]

Skip to content

Latest commit

 

History

History

examples

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

spaCy examples

For spaCy v3 we've converted many of the v2 example scripts into end-to-end spacy projects workflows. The workflows include all the steps to go from data to packaged spaCy models.

🪐 Pipeline component demos

The simplest demos for training a single pipeline component are in the pipelines category including:

🪐 Tutorials

The tutorials category includes examples that work through specific NLP use cases end-to-end:

Check out the projects documentation and browse through the available projects!

🚀 Get started with a demo project

The pipelines/ner_demo project converts the spaCy v2 train_ner.py demo script into a spaCy v3 project.

  1. Clone the project:

    python -m spacy project clone pipelines/ner_demo
  2. Install requirements and download any data assets:

    cd ner_demo
    python -m pip install -r requirements.txt
    python -m spacy project assets
  3. Run the default workflow to convert, train and evaluate:

    python -m spacy project run all

    Sample output:

    ℹ Running workflow 'all'
    
    ================================== convert ==================================
    Running command: /home/user/venv/bin/python scripts/convert.py en assets/train.json corpus/train.spacy
    Running command: /home/user/venv/bin/python scripts/convert.py en assets/dev.json corpus/dev.spacy
    
    =============================== create-config ===============================
    Running command: /home/user/venv/bin/python -m spacy init config --lang en --pipeline ner configs/config.cfg --force
    ℹ Generated config template specific for your use case
    - Language: en
    - Pipeline: ner
    - Optimize for: efficiency
    - Hardware: CPU
    - Transformer: None
    ✔ Auto-filled config with all values
    ✔ Saved config
    configs/config.cfg
    You can now add your data and train your pipeline:
    python -m spacy train config.cfg --paths.train ./train.spacy --paths.dev ./dev.spacy
    
    =================================== train ===================================
    Running command: /home/user/venv/bin/python -m spacy train configs/config.cfg --output training/ --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy --training.eval_frequency 10 --training.max_steps 100 --gpu-id -1
    ℹ Using CPU
    
    =========================== Initializing pipeline ===========================
    [2021-03-11 19:34:59,101] [INFO] Set up nlp object from config
    [2021-03-11 19:34:59,109] [INFO] Pipeline: ['tok2vec', 'ner']
    [2021-03-11 19:34:59,113] [INFO] Created vocabulary
    [2021-03-11 19:34:59,113] [INFO] Finished initializing nlp object
    [2021-03-11 19:34:59,265] [INFO] Initialized pipeline components: ['tok2vec', 'ner']
    ✔ Initialized pipeline
    
    ============================= Training pipeline =============================
    ℹ Pipeline: ['tok2vec', 'ner']
    ℹ Initial learn rate: 0.001
    E    #       LOSS TOK2VEC  LOSS NER  ENTS_F  ENTS_P  ENTS_R  SCORE 
    ---  ------  ------------  --------  ------  ------  ------  ------
      0       0          0.00      7.90    0.00    0.00    0.00    0.00
     10      10          0.11     71.07    0.00    0.00    0.00    0.00
     20      20          0.65     22.44   50.00   50.00   50.00    0.50
     30      30          0.22      6.38   80.00   66.67  100.00    0.80
     40      40          0.00      0.00   80.00   66.67  100.00    0.80
     50      50          0.00      0.00   80.00   66.67  100.00    0.80
     60      60          0.00      0.00  100.00  100.00  100.00    1.00
     70      70          0.00      0.00  100.00  100.00  100.00    1.00
     80      80          0.00      0.00  100.00  100.00  100.00    1.00
     90      90          0.00      0.00  100.00  100.00  100.00    1.00
    100     100          0.00      0.00  100.00  100.00  100.00    1.00
    ✔ Saved pipeline to output directory
    training/model-last
    
  4. Package the model:

    python -m spacy project run package
  5. Visualize the model's output with Streamlit:

    python -m spacy project run visualize-model