-
Notifications
You must be signed in to change notification settings - Fork 135
/
kinetics.py
556 lines (501 loc) · 22.5 KB
/
kinetics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import os
import numpy as np
from numpy.lib.function_base import disp
import torch
import decord
from PIL import Image
from torchvision import transforms
from random_erasing import RandomErasing
import warnings
from decord import VideoReader, cpu
from torch.utils.data import Dataset
import video_transforms as video_transforms
import volume_transforms as volume_transforms
class VideoClsDataset(Dataset):
"""Load your own video classification dataset."""
def __init__(self, anno_path, data_path, mode='train', clip_len=8,
frame_sample_rate=2, crop_size=224, short_side_size=256,
new_height=256, new_width=340, keep_aspect_ratio=True,
num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3,args=None):
self.anno_path = anno_path
self.data_path = data_path
self.mode = mode
self.clip_len = clip_len
self.frame_sample_rate = frame_sample_rate
self.crop_size = crop_size
self.short_side_size = short_side_size
self.new_height = new_height
self.new_width = new_width
self.keep_aspect_ratio = keep_aspect_ratio
self.num_segment = num_segment
self.test_num_segment = test_num_segment
self.num_crop = num_crop
self.test_num_crop = test_num_crop
self.args = args
self.aug = False
self.rand_erase = False
if self.mode in ['train']:
self.aug = True
if self.args.reprob > 0:
self.rand_erase = True
if VideoReader is None:
raise ImportError("Unable to import `decord` which is required to read videos.")
import pandas as pd
cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ')
self.dataset_samples = list(cleaned.values[:, 0])
self.label_array = list(cleaned.values[:, 1])
if (mode == 'train'):
pass
elif (mode == 'validation'):
self.data_transform = video_transforms.Compose([
video_transforms.Resize(self.short_side_size, interpolation='bilinear'),
video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)),
volume_transforms.ClipToTensor(),
video_transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
elif mode == 'test':
self.data_resize = video_transforms.Compose([
video_transforms.Resize(size=(short_side_size), interpolation='bilinear')
])
self.data_transform = video_transforms.Compose([
volume_transforms.ClipToTensor(),
video_transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.test_seg = []
self.test_dataset = []
self.test_label_array = []
for ck in range(self.test_num_segment):
for cp in range(self.test_num_crop):
for idx in range(len(self.label_array)):
sample_label = self.label_array[idx]
self.test_label_array.append(sample_label)
self.test_dataset.append(self.dataset_samples[idx])
self.test_seg.append((ck, cp))
def __getitem__(self, index):
if self.mode == 'train':
args = self.args
scale_t = 1
sample = self.dataset_samples[index]
buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) # T H W C
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn("video {} not correctly loaded during training".format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t)
if args.num_sample > 1:
frame_list = []
label_list = []
index_list = []
for _ in range(args.num_sample):
new_frames = self._aug_frame(buffer, args)
label = self.label_array[index]
frame_list.append(new_frames)
label_list.append(label)
index_list.append(index)
return frame_list, label_list, index_list, {}
else:
buffer = self._aug_frame(buffer, args)
return buffer, self.label_array[index], index, {}
elif self.mode == 'validation':
sample = self.dataset_samples[index]
buffer = self.loadvideo_decord(sample)
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn("video {} not correctly loaded during validation".format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.loadvideo_decord(sample)
buffer = self.data_transform(buffer)
return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0]
elif self.mode == 'test':
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.loadvideo_decord(sample)
while len(buffer) == 0:
warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\
str(self.test_dataset[index]), chunk_nb, split_nb))
index = np.random.randint(self.__len__())
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.loadvideo_decord(sample)
buffer = self.data_resize(buffer)
if isinstance(buffer, list):
buffer = np.stack(buffer, 0)
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \
/ (self.test_num_crop - 1)
temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \
/ (self.test_num_segment - 1), 0)
temporal_start = int(chunk_nb * temporal_step)
spatial_start = int(split_nb * spatial_step)
if buffer.shape[1] >= buffer.shape[2]:
buffer = buffer[temporal_start:temporal_start + self.clip_len, \
spatial_start:spatial_start + self.short_side_size, :, :]
else:
buffer = buffer[temporal_start:temporal_start + self.clip_len, \
:, spatial_start:spatial_start + self.short_side_size, :]
buffer = self.data_transform(buffer)
return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \
chunk_nb, split_nb
else:
raise NameError('mode {} unkown'.format(self.mode))
def _aug_frame(
self,
buffer,
args,
):
aug_transform = video_transforms.create_random_augment(
input_size=(self.crop_size, self.crop_size),
auto_augment=args.aa,
interpolation=args.train_interpolation,
)
buffer = [
transforms.ToPILImage()(frame) for frame in buffer
]
buffer = aug_transform(buffer)
buffer = [transforms.ToTensor()(img) for img in buffer]
buffer = torch.stack(buffer) # T C H W
buffer = buffer.permute(0, 2, 3, 1) # T H W C
# T H W C
buffer = tensor_normalize(
buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
)
# T H W C -> C T H W.
buffer = buffer.permute(3, 0, 1, 2)
# Perform data augmentation.
scl, asp = (
[0.08, 1.0],
[0.75, 1.3333],
)
buffer = spatial_sampling(
buffer,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=self.crop_size,
random_horizontal_flip=False if args.data_set == 'SSV2' else True ,
inverse_uniform_sampling=False,
aspect_ratio=asp,
scale=scl,
motion_shift=False
)
if self.rand_erase:
erase_transform = RandomErasing(
args.reprob,
mode=args.remode,
max_count=args.recount,
num_splits=args.recount,
device="cpu",
)
buffer = buffer.permute(1, 0, 2, 3)
buffer = erase_transform(buffer)
buffer = buffer.permute(1, 0, 2, 3)
return buffer
def loadvideo_decord(self, sample, sample_rate_scale=1):
"""Load video content using Decord"""
fname = sample
if not (os.path.exists(fname)):
return []
# avoid hanging issue
if os.path.getsize(fname) < 1 * 1024:
print('SKIP: ', fname, " - ", os.path.getsize(fname))
return []
try:
if self.keep_aspect_ratio:
vr = VideoReader(fname, num_threads=1, ctx=cpu(0))
else:
vr = VideoReader(fname, width=self.new_width, height=self.new_height,
num_threads=1, ctx=cpu(0))
except:
print("video cannot be loaded by decord: ", fname)
return []
if self.mode == 'test':
all_index = [x for x in range(0, len(vr), self.frame_sample_rate)]
while len(all_index) < self.clip_len:
all_index.append(all_index[-1])
vr.seek(0)
buffer = vr.get_batch(all_index).asnumpy()
return buffer
# handle temporal segments
converted_len = int(self.clip_len * self.frame_sample_rate)
seg_len = len(vr) // self.num_segment
all_index = []
for i in range(self.num_segment):
if seg_len <= converted_len:
index = np.linspace(0, seg_len, num=seg_len // self.frame_sample_rate)
index = np.concatenate((index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len))
index = np.clip(index, 0, seg_len - 1).astype(np.int64)
else:
end_idx = np.random.randint(converted_len, seg_len)
str_idx = end_idx - converted_len
index = np.linspace(str_idx, end_idx, num=self.clip_len)
index = np.clip(index, str_idx, end_idx - 1).astype(np.int64)
index = index + i*seg_len
all_index.extend(list(index))
all_index = all_index[::int(sample_rate_scale)]
vr.seek(0)
buffer = vr.get_batch(all_index).asnumpy()
return buffer
def __len__(self):
if self.mode != 'test':
return len(self.dataset_samples)
else:
return len(self.test_dataset)
def spatial_sampling(
frames,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=224,
random_horizontal_flip=True,
inverse_uniform_sampling=False,
aspect_ratio=None,
scale=None,
motion_shift=False,
):
"""
Perform spatial sampling on the given video frames. If spatial_idx is
-1, perform random scale, random crop, and random flip on the given
frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling
with the given spatial_idx.
Args:
frames (tensor): frames of images sampled from the video. The
dimension is `num frames` x `height` x `width` x `channel`.
spatial_idx (int): if -1, perform random spatial sampling. If 0, 1,
or 2, perform left, center, right crop if width is larger than
height, and perform top, center, buttom crop if height is larger
than width.
min_scale (int): the minimal size of scaling.
max_scale (int): the maximal size of scaling.
crop_size (int): the size of height and width used to crop the
frames.
inverse_uniform_sampling (bool): if True, sample uniformly in
[1 / max_scale, 1 / min_scale] and take a reciprocal to get the
scale. If False, take a uniform sample from [min_scale,
max_scale].
aspect_ratio (list): Aspect ratio range for resizing.
scale (list): Scale range for resizing.
motion_shift (bool): Whether to apply motion shift for resizing.
Returns:
frames (tensor): spatially sampled frames.
"""
assert spatial_idx in [-1, 0, 1, 2]
if spatial_idx == -1:
if aspect_ratio is None and scale is None:
frames, _ = video_transforms.random_short_side_scale_jitter(
images=frames,
min_size=min_scale,
max_size=max_scale,
inverse_uniform_sampling=inverse_uniform_sampling,
)
frames, _ = video_transforms.random_crop(frames, crop_size)
else:
transform_func = (
video_transforms.random_resized_crop_with_shift
if motion_shift
else video_transforms.random_resized_crop
)
frames = transform_func(
images=frames,
target_height=crop_size,
target_width=crop_size,
scale=scale,
ratio=aspect_ratio,
)
if random_horizontal_flip:
frames, _ = video_transforms.horizontal_flip(0.5, frames)
else:
# The testing is deterministic and no jitter should be performed.
# min_scale, max_scale, and crop_size are expect to be the same.
assert len({min_scale, max_scale, crop_size}) == 1
frames, _ = video_transforms.random_short_side_scale_jitter(
frames, min_scale, max_scale
)
frames, _ = video_transforms.uniform_crop(frames, crop_size, spatial_idx)
return frames
def tensor_normalize(tensor, mean, std):
"""
Normalize a given tensor by subtracting the mean and dividing the std.
Args:
tensor (tensor): tensor to normalize.
mean (tensor or list): mean value to subtract.
std (tensor or list): std to divide.
"""
if tensor.dtype == torch.uint8:
tensor = tensor.float()
tensor = tensor / 255.0
if type(mean) == list:
mean = torch.tensor(mean)
if type(std) == list:
std = torch.tensor(std)
tensor = tensor - mean
tensor = tensor / std
return tensor
class VideoMAE(torch.utils.data.Dataset):
"""Load your own video classification dataset.
Parameters
----------
root : str, required.
Path to the root folder storing the dataset.
setting : str, required.
A text file describing the dataset, each line per video sample.
There are three items in each line: (1) video path; (2) video length and (3) video label.
train : bool, default True.
Whether to load the training or validation set.
test_mode : bool, default False.
Whether to perform evaluation on the test set.
Usually there is three-crop or ten-crop evaluation strategy involved.
name_pattern : str, default None.
The naming pattern of the decoded video frames.
For example, img_00012.jpg.
video_ext : str, default 'mp4'.
If video_loader is set to True, please specify the video format accordinly.
is_color : bool, default True.
Whether the loaded image is color or grayscale.
modality : str, default 'rgb'.
Input modalities, we support only rgb video frames for now.
Will add support for rgb difference image and optical flow image later.
num_segments : int, default 1.
Number of segments to evenly divide the video into clips.
A useful technique to obtain global video-level information.
Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016.
num_crop : int, default 1.
Number of crops for each image. default is 1.
Common choices are three crops and ten crops during evaluation.
new_length : int, default 1.
The length of input video clip. Default is a single image, but it can be multiple video frames.
For example, new_length=16 means we will extract a video clip of consecutive 16 frames.
new_step : int, default 1.
Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames.
new_step=2 means we will extract a video clip of every other frame.
temporal_jitter : bool, default False.
Whether to temporally jitter if new_step > 1.
video_loader : bool, default False.
Whether to use video loader to load data.
use_decord : bool, default True.
Whether to use Decord video loader to load data. Otherwise use mmcv video loader.
transform : function, default None.
A function that takes data and label and transforms them.
data_aug : str, default 'v1'.
Different types of data augmentation auto. Supports v1, v2, v3 and v4.
lazy_init : bool, default False.
If set to True, build a dataset instance without loading any dataset.
"""
def __init__(self,
root,
setting,
train=True,
test_mode=False,
name_pattern='img_%05d.jpg',
video_ext='mp4',
is_color=True,
modality='rgb',
num_segments=1,
num_crop=1,
new_length=1,
new_step=1,
transform=None,
temporal_jitter=False,
video_loader=False,
use_decord=False,
lazy_init=False):
super(VideoMAE, self).__init__()
self.root = root
self.setting = setting
self.train = train
self.test_mode = test_mode
self.is_color = is_color
self.modality = modality
self.num_segments = num_segments
self.num_crop = num_crop
self.new_length = new_length
self.new_step = new_step
self.skip_length = self.new_length * self.new_step
self.temporal_jitter = temporal_jitter
self.name_pattern = name_pattern
self.video_loader = video_loader
self.video_ext = video_ext
self.use_decord = use_decord
self.transform = transform
self.lazy_init = lazy_init
if not self.lazy_init:
self.clips = self._make_dataset(root, setting)
if len(self.clips) == 0:
raise(RuntimeError("Found 0 video clips in subfolders of: " + root + "\n"
"Check your data directory (opt.data-dir)."))
def __getitem__(self, index):
directory, target = self.clips[index]
if self.video_loader:
if '.' in directory.split('/')[-1]:
# data in the "setting" file already have extension, e.g., demo.mp4
video_name = directory
else:
# data in the "setting" file do not have extension, e.g., demo
# So we need to provide extension (i.e., .mp4) to complete the file name.
video_name = '{}.{}'.format(directory, self.video_ext)
decord_vr = decord.VideoReader(video_name, num_threads=1)
duration = len(decord_vr)
segment_indices, skip_offsets = self._sample_train_indices(duration)
images = self._video_TSN_decord_batch_loader(directory, decord_vr, duration, segment_indices, skip_offsets)
process_data, mask = self.transform((images, None)) # T*C,H,W
process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0,1) # T*C,H,W -> T,C,H,W -> C,T,H,W
return (process_data, mask)
def __len__(self):
return len(self.clips)
def _make_dataset(self, directory, setting):
if not os.path.exists(setting):
raise(RuntimeError("Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting)))
clips = []
with open(setting) as split_f:
data = split_f.readlines()
for line in data:
line_info = line.split(' ')
# line format: video_path, video_duration, video_label
if len(line_info) < 2:
raise(RuntimeError('Video input format is not correct, missing one or more element. %s' % line))
clip_path = os.path.join(line_info[0])
target = int(line_info[1])
item = (clip_path, target)
clips.append(item)
return clips
def _sample_train_indices(self, num_frames):
average_duration = (num_frames - self.skip_length + 1) // self.num_segments
if average_duration > 0:
offsets = np.multiply(list(range(self.num_segments)),
average_duration)
offsets = offsets + np.random.randint(average_duration,
size=self.num_segments)
elif num_frames > max(self.num_segments, self.skip_length):
offsets = np.sort(np.random.randint(
num_frames - self.skip_length + 1,
size=self.num_segments))
else:
offsets = np.zeros((self.num_segments,))
if self.temporal_jitter:
skip_offsets = np.random.randint(
self.new_step, size=self.skip_length // self.new_step)
else:
skip_offsets = np.zeros(
self.skip_length // self.new_step, dtype=int)
return offsets + 1, skip_offsets
def _video_TSN_decord_batch_loader(self, directory, video_reader, duration, indices, skip_offsets):
sampled_list = []
frame_id_list = []
for seg_ind in indices:
offset = int(seg_ind)
for i, _ in enumerate(range(0, self.skip_length, self.new_step)):
if offset + skip_offsets[i] <= duration:
frame_id = offset + skip_offsets[i] - 1
else:
frame_id = offset - 1
frame_id_list.append(frame_id)
if offset + self.new_step < duration:
offset += self.new_step
try:
video_data = video_reader.get_batch(frame_id_list).asnumpy()
sampled_list = [Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list)]
except:
raise RuntimeError('Error occured in reading frames {} from video {} of duration {}.'.format(frame_id_list, directory, duration))
return sampled_list