Integrals of the type , where is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions.
| 7.7.1 | |||
| , | |||
|
ⓘ
| |||
| 7.7.2 | |||
| . | |||
|
ⓘ
| |||
| 7.7.3 | |||
| . | |||
|
ⓘ
| |||
| 7.7.4 | |||
| , . | |||
|
ⓘ
| |||
| 7.7.5 | |||
| . | |||
|
ⓘ
| |||
| 7.7.6 | |||
| . | |||
|
ⓘ
| |||
| 7.7.7 | |||
| , . | |||
|
ⓘ
| |||
| 7.7.8 | |||
| , . | |||
|
ⓘ
| |||
| 7.7.9 | |||
|
ⓘ
| |||
| 7.7.10 | ||||
| , | ||||
|
ⓘ
| ||||
| 7.7.11 | ||||
| , | ||||
|
ⓘ
| ||||
| 7.7.12 | |||
|
ⓘ
| |||
| 7.7.13 | |||
|
ⓘ
| |||
| 7.7.14 | |||
|
ⓘ
| |||
In (7.7.13) and (7.7.14) the integration paths are straight lines, , and is a constant such that in (7.7.13), and in (7.7.14).
| 7.7.15 | |||
| , | |||
|
ⓘ
| |||
| 7.7.16 | |||
| . | |||
|
ⓘ
| |||