When ,
| 25.2.1 | |||
|
ⓘ
| |||
Elsewhere is defined by analytic continuation. It is a meromorphic function whose only singularity in is a simple pole at , with residue 1.
| 25.2.2 | |||
| . | |||
|
ⓘ
| |||
| 25.2.3 | |||
| . | |||
|
ⓘ
| |||
| 25.2.4 | |||
|
ⓘ
| |||
where the Stieltjes constants are defined via
| 25.2.5 | |||
|
ⓘ
| |||
| 25.2.6 | |||
| . | |||
|
ⓘ
| |||
| 25.2.7 | |||
| , . | |||
|
ⓘ
| |||
| 25.2.8 | |||
| , . | |||
|
ⓘ
| |||
| 25.2.9 | |||
| ; . | |||
|
ⓘ
| |||
| 25.2.10 | |||
| , . | |||
|
ⓘ
| |||
| 25.2.11 | |||
| , | |||
|
ⓘ
| |||
product over all primes .
| 25.2.12 | |||
|
ⓘ
| |||
product over zeros of with (see §25.10(i)); is Euler’s constant (§5.2(ii)).