The function was introduced in Hurwitz (1882) and defined by the series expansion
| 25.11.1 | |||
| , . | |||
| 
ⓘ
 
 | |||
has a meromorphic continuation in the -plane, its only singularity in being a simple pole at with residue . As a function of , with () fixed, is analytic in the half-plane . The Riemann zeta function is a special case:
| 25.11.2 | |||
| 
ⓘ
 
 | |||
For most purposes it suffices to restrict because of the following straightforward consequences of (25.11.1):
| 25.11.3 | |||
| 
ⓘ
 
 | |||
| 25.11.4 | |||
| . | |||
| 
ⓘ
 
 | |||
Most references treat real with .
| 25.11.5 | |||
| , , , . | |||
| 
ⓘ
 
 | |||
| 25.11.6 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.7 | |||
| , , , . | |||
| 
ⓘ
 
 | |||
For see §24.2(iii).
| 25.11.8 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.9 | |||
| if ; if . | |||
| 
ⓘ
 
 | |||
| 25.11.10 | |||
| , . | |||
| 
ⓘ
 
 | |||
Throughout this subsection .
| 25.11.11 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.12 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.13 | |||
| 
ⓘ
 
 | |||
| 25.11.14 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.15 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.16 | |||
| ; integers, . | |||
| 
ⓘ
 
 | |||
| 25.11.17 | |||
| ; . | |||
| 
ⓘ
 
 | |||
In (25.11.18)–(25.11.24) primes on denote derivatives with respect to . Similarly in §§25.11(viii) and 25.11(xii).
| 25.11.18 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.19 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.20 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.21 | |||
| 
ⓘ
 
 | |||
where are integers with and .
| 25.11.22 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.23 | |||
| . | |||
| 
ⓘ
 
 | |||
| 25.11.24 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.25 | ||||
| , . | ||||
| 
ⓘ
 
 | ||||
| 25.11.26 | ||||
| , . | ||||
| 
ⓘ
 
 | ||||
| 25.11.27 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.28 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.29 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.30 | |||
| , , | |||
| 
ⓘ
 
 | |||
where the integration contour (see Figure 5.9.1) is a loop around the negative real axis as described for (25.5.20).
Suggested 2021-08-23 by Gergő Nemes
| 25.11.31 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.32 | |||
| , , | |||
| 
ⓘ
 
 | |||
where are the harmonic numbers:
| 25.11.33 | |||
| 
ⓘ
 
 | |||
| 25.11.34 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.35 | |||
| , ; or , , . | |||
| 
ⓘ
 
 | |||
When , (25.11.35) reduces to (25.2.3).
| 25.11.36 | Removed because it is just (25.15.1) combined with (25.15.3). | ||
| 
ⓘ
 
 | |||
| 25.11.37 | |||
| , . | |||
| 
ⓘ
 
 | |||
| 25.11.38 | |||
| , , . | |||
| 
ⓘ
 
 | |||
| 25.11.39 | |||
| 
ⓘ
 
 | |||
where is Catalan’s constant:
| 25.11.40 | |||
| 
ⓘ
 
 | |||
As with fixed,
| 25.11.41 | |||
| 
ⓘ
 
 | |||
As with fixed, ,
| 25.11.42 | |||
| 
ⓘ
 
 | |||
uniformly with respect to bounded nonnegative values of .
As in the sector , with and fixed, we have the asymptotic expansion
| 25.11.43 | |||
| 
ⓘ
 
 | |||
Similarly, as in the sector .
| 25.11.44 | |||
| 
ⓘ
 
 | |||
and
| 25.11.45 | |||
| 
ⓘ
 
 | |||
For the more general case , , see Elizalde (1986). For error bounds for (25.11.43), (25.11.44) and (25.11.45), see Nemes (2017a).