| 18.14.1 | |||
| , , , | |||
|
ⓘ
| |||
| 18.14.2 | |||
| , , . | |||
|
ⓘ
| |||
| 18.14.3 | |||
| , , . | |||
|
ⓘ
| |||
| 18.14.3_5 | |||
| , . | |||
|
ⓘ
| |||
Equations (18.14.3) and (18.14.3_5) are Bernstein-type inequalities. For further inequalities of this type see Koornwinder et al. (2018, §1) and references given there.
| 18.14.4 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.5 | |||
| , , | |||
|
ⓘ
| |||
| 18.14.6 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.7 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.8 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.9 | |||
| . | |||
|
ⓘ
| |||
For further inequalities see Abramowitz and Stegun (1964, §22.14).
| 18.14.10 | |||
| . | |||
|
ⓘ
| |||
Let . Then
| 18.14.11 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.12 | |||
| , . | |||
|
ⓘ
| |||
| 18.14.13 | |||
| . | |||
|
ⓘ
| |||
Let the maxima , , of in be arranged so that
| 18.14.14 | |||
|
ⓘ
| |||
When choose so that
| 18.14.15 | |||
|
ⓘ
| |||
Then
| 18.14.16 | ||||
|
ⓘ
| ||||
| 18.14.17 | ||||
| . | ||||
|
ⓘ
| ||||
Also,
| 18.14.18 | |||
| , , | |||
|
ⓘ
| |||
| 18.14.19 | |||
| , , | |||
|
ⓘ
| |||
except that when (Chebyshev case) is constant.
| 18.14.20 | |||
| , . | |||
|
ⓘ
| |||
For extensions of (18.14.20) see Askey (1990) and Wong and Zhang (1994a, b).
Let the maxima , , of in be arranged so that
| 18.14.21 | |||
|
ⓘ
| |||
When choose so that
| 18.14.22 | |||
|
ⓘ
| |||
Then
| 18.14.23 | ||||
|
ⓘ
| ||||
Also, when
| 18.14.24 | |||
|
ⓘ
| |||
The successive maxima of form a decreasing sequence for , and an increasing sequence for .
| 18.14.25 | |||
| , , , . | |||
|
ⓘ
| |||
| 18.14.26 | |||
| , , | |||
|
ⓘ
| |||
for , or , . The case of (18.14.26) is the Askey–Gasper inequality (18.38.3).
| 18.14.27 | |||
| , , . | |||
|
ⓘ
| |||