Sub-package for objects used in interpolation.
As listed below, this sub-package contains spline functions and classes, one-dimensional and multi-dimensional (univariate and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FITPACK and DFITPACK functions.
| interp1d(x, y[, kind, axis, copy, ...]) | Interpolate a 1-D function. | 
| BarycentricInterpolator(xi[, yi, axis]) | The interpolating polynomial for a set of points | 
| KroghInterpolator(xi, yi[, axis]) | Interpolating polynomial for a set of points. | 
| PiecewisePolynomial(xi, yi[, orders, ...]) | Piecewise polynomial curve specified by points and derivatives | 
| PchipInterpolator(x, y[, axis]) | PCHIP 1-d monotonic cubic interpolation | 
| barycentric_interpolate(xi, yi, x[, axis]) | Convenience function for polynomial interpolation. | 
| krogh_interpolate(xi, yi, x[, der, axis]) | Convenience function for polynomial interpolation. | 
| piecewise_polynomial_interpolate(xi, yi, x) | Convenience function for piecewise polynomial interpolation. | 
| pchip_interpolate(xi, yi, x[, der, axis]) | Convenience function for pchip interpolation. | 
Unstructured data:
| griddata(points, values, xi[, method, ...]) | Interpolate unstructured N-dimensional data. | 
| LinearNDInterpolator(points, values) | Piecewise linear interpolant in N dimensions. | 
| NearestNDInterpolator(points, values) | Nearest-neighbour interpolation in N dimensions. | 
| CloughTocher2DInterpolator(points, values[, tol]) | Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D. | 
| Rbf(*args) | A class for radial basis function approximation/interpolation of n-dimensional scattered data. | 
| interp2d(x, y, z[, kind, copy, ...]) | Interpolate over a 2-D grid. | 
For data on a grid:
| RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) | Bivariate spline approximation over a rectangular mesh. | 
See also
scipy.ndimage.map_coordinates
| UnivariateSpline(x, y[, w, bbox, k, s]) | One-dimensional smoothing spline fit to a given set of data points. | 
| InterpolatedUnivariateSpline(x, y[, w, bbox, k]) | One-dimensional interpolating spline for a given set of data points. | 
| LSQUnivariateSpline(x, y, t[, w, bbox, k]) | One-dimensional spline with explicit internal knots. | 
The above univariate spline classes have the following methods:
| UnivariateSpline.__call__(x[, nu]) | Evaluate spline (or its nu-th derivative) at positions x. | 
| UnivariateSpline.derivatives(x) | Return all derivatives of the spline at the point x. | 
| UnivariateSpline.integral(a, b) | Return definite integral of the spline between two given points. | 
| UnivariateSpline.roots() | Return the zeros of the spline. | 
| UnivariateSpline.get_coeffs() | Return spline coefficients. | 
| UnivariateSpline.get_knots() | Return positions of (boundary and interior) knots of the spline. | 
| UnivariateSpline.get_residual() | Return weighted sum of squared residuals of the spline | 
| UnivariateSpline.set_smoothing_factor(s) | Continue spline computation with the given smoothing | 
Low-level interface to FITPACK functions:
| splrep(x, y[, w, xb, xe, k, task, s, t, ...]) | Find the B-spline representation of 1-D curve. | 
| splprep(x[, w, u, ub, ue, k, task, s, t, ...]) | Find the B-spline representation of an N-dimensional curve. | 
| splev(x, tck[, der, ext]) | Evaluate a B-spline or its derivatives. | 
| splint(a, b, tck[, full_output]) | Evaluate the definite integral of a B-spline. | 
| sproot(tck[, mest]) | Find the roots of a cubic B-spline. | 
| spalde(x, tck) | Evaluate all derivatives of a B-spline. | 
| bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, ...]) | Find a bivariate B-spline representation of a surface. | 
| bisplev(x, y, tck[, dx, dy]) | Evaluate a bivariate B-spline and its derivatives. | 
For data on a grid:
| RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) | Bivariate spline approximation over a rectangular mesh. | 
| RectSphereBivariateSpline(u, v, r[, s, ...]) | Bivariate spline approximation over a rectangular mesh on a sphere. | 
For unstructured data:
| BivariateSpline | Base class for bivariate splines. | 
| SmoothBivariateSpline(x, y, z[, w, bbox, ...]) | Smooth bivariate spline approximation. | 
| LSQBivariateSpline(x, y, z, tx, ty[, w, ...]) | Weighted least-squares bivariate spline approximation. | 
Low-level interface to FITPACK functions:
| bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, ...]) | Find a bivariate B-spline representation of a surface. | 
| bisplev(x, y, tck[, dx, dy]) | Evaluate a bivariate B-spline and its derivatives. | 
| lagrange(x, w) | Return a Lagrange interpolating polynomial. | 
| approximate_taylor_polynomial(f, x, degree, ...) | Estimate the Taylor polynomial of f at x by polynomial fitting. | 
See also
scipy.ndimage.map_coordinates, scipy.ndimage.spline_filter, scipy.signal.resample, scipy.signal.bspline, scipy.signal.gauss_spline, scipy.signal.qspline1d, scipy.signal.cspline1d, scipy.signal.qspline1d_eval, scipy.signal.cspline1d_eval, scipy.signal.qspline2d, scipy.signal.cspline2d.