Welcome to the torchao Documentation ==================================== `torchao `__ is a library for custom data types and optimizations. Quantize and sparsify weights, gradients, optimizers, and activations for inference and training using native PyTorch. Please checkout torchao `README `__ for an overall introduction to the library and recent highlight and updates. .. toctree:: :glob: :maxdepth: 1 :caption: Getting Started quick_start .. toctree:: :glob: :maxdepth: 1 :caption: Developer Notes quantization_overview contributor_guide sparsity benchmarking_api_guide benchmarking_user_guide .. toctree:: :glob: :maxdepth: 1 :caption: API Reference api_ref_dtypes api_ref_quantization api_ref_qat api_ref_sparsity api_ref_float8 api_ref_utils .. toctree:: :glob: :maxdepth: 1 :caption: Eager Quantization Tutorials pretraining finetuning serving torchao_vllm_integration serialization static_quantization subclass_basic subclass_advanced .. toctree:: :glob: :maxdepth: 1 :caption: PT2E Quantization Tutorials tutorials_source/pt2e_quant_ptq tutorials_source/pt2e_quant_qat tutorials_source/pt2e_quant_x86_inductor tutorials_source/pt2e_quant_xpu_inductor tutorials_source/pt2e_quant_openvino_inductor tutorials_source/pt2e_quantizer