
Batch spacing optimization by reinforcement learning

Matthias Remta and Francesco Velotti
CERN, Geneva 1211, Switzerland

Sharwin Rezagholi
UAS Technikum Wien, Vienna 1200, Austria

(Received 21 January 2025; accepted 3 September 2025; published 25 September 2025)

Beams designated for the LHC are injected into the SPS in multiple batches. Given the tight spacing of
200ns between these batches, the injection kickers have to be precisely synchronizedwith the injected beam to
minimize injection oscillations. Due to machine drift, the optimal settings for the kickers vary. This paper
presents an active controller trained by reinforcement learning that counteracts themachine drifts by adjusting
the settings. The agent was exclusively trained in a simulation environment and directly transferred to the
accelerator. Although its results are slightly worse than those obtained by an explicit numerical optimizer, the
BOBYQA algorithm, the agent attains these results much faster since it requires far less computation.

DOI: 10.1103/g9wr-197z

I. INTRODUCTION

At CERN, particles are accelerated through a chain of
accelerators, each suitable for a specific energy range. The
injected particles are guided toward the circular orbit of the
receiving accelerator, and at extraction, particles are
diverted from that trajectory into a transfer line. In both
processes, fast-pulsed magnets, known as kickers, are used
to guide the motion of particles. The Super Proton
Synchrotron (SPS) is a circular accelerator that provides
proton beams for the Large Hadron Collider (LHC). To do
so, batches of particles are sequentially injected into the
SPS from the Proton Synchrotron. The luminosity of the
LHC is directly proportional to the number of particles
stored; hence, reducing the batch spacing may allow for
more total intensity [1]. If the batch spacing is smaller than
the time it takes for the injection kickers of the SPS to reach
their design voltage, either the circulating beam is per-
turbed or the injected beam is not placed on a suitable orbit.
This causes excessive oscillations of the circulating beam,
known as injection oscillations, which may degrade the
beam quality or cause the loss of the beam. Therefore, the
batch spacing must trade off oscillations of the injected and
circulating beam to optimize the beam quality delivered to
the LHC (Sec. III H). Currently, numerical optimization is
employed for this purpose [2], specifically BOBYQA
(Bound Optimization By Quadratic Approximation) [3].
Numerical approaches to batch spacing have three

disadvantages. First, the optimization problem itself is
subject to drift due to gradual changes in the injection
system and the accelerator. In such cases, the optimizer has
to be rerun or losses must be accepted. Second, the
instability or nonuniqueness of solutions may lead to
relatively large changes in the settings, potentially causing
large changes in beam quality between injections. Third,
each time the numerical optimizer is applied, it must
explore the surface of the loss function anew [3], some-
times requiring several hundred evaluations. These evalu-
ations are costly since they can only be undertaken once per
supercycle of the accelerator, that is, roughly twice per
minute. One alternative is time-varying Bayesian optimi-
zation [4–7] and another is reinforcement learning (RL).
We investigate the latter. Our aim is to develop an agent
capable of optimizing the injection system even after an
extended shutdown and of serving as an active controller
during operation, that is, counteracting drifts of the accel-
erator during its active use. A partially observable simu-
lation environment of the accelerator was used to train such
agents via RL. The agents were then directly deployed on
the accelerator without any training in the real environ-
ment. The best performance was achieved with a recurrent
version of proximal policy optimization (PPO) [8]. This
agent consistently maintained a valid working point under
perturbations. To the best of our knowledge, this constitutes
the first successful application of RL with recurrent policy
networks in accelerator physics. The simulation environ-
ment, data, and program code are publicly available [9].

II. RELATED WORK

Since training on real accelerators is costly [10–14], the
application of machine learning in this domain requires

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 28, 094603 (2025)

2469-9888=25=28(9)=094603(13) 094603-1 Published by the American Physical Society

https://orcid.org/0009-0009-7154-9387
https://orcid.org/0000-0001-7815-6011
https://ror.org/01ggx4157
https://orcid.org/0000-0003-1090-0240
https://ror.org/04jsx0x49
https://crossmark.crossref.org/dialog/?doi=10.1103/g9wr-197z&domain=pdf&date_stamp=2025-09-25
https://doi.org/10.1103/g9wr-197z
https://doi.org/10.1103/g9wr-197z
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


either extremely data-efficient algorithms, a description that
does not apply to deep RL methods, or sufficiently valid
simulation environments [13,15–17]. The transfer of an
agent from a simulation environment to the real hardware is
complicated by the noisiness of observations and the partial
observability of the environment [14,18,19]. Kain et al.
evaluated RL agents on the task of trajectory correction at
two beamlines at CERN: the electron line of the Advanced
Proton-Driven Plasma Wakefield Acceleration Experiment
(AWAKE) and the Linear Accelerator 4 (LINAC4) [11].
Their experiments used deep Q-Learning with normalized
advantage functions (NAFs) [20]. At AWAKE, the agent
was usually able to correct the trajectory below a root mean
squared deviation (RMSD) from the target trajectory of
1 mm within one or two iterations; at LINAC4, the agent
needed at most three iterations to achieve this, in both cases
outperforming numerical optimizers [11]. Although RL
was deemed sufficiently sample efficient to train on the
actual accelerator, the authors proposed using simulation
environments for off-line training [11].
Velotti et al. [13] compared RL (TD3 [21]) and numeri-

cal optimization on the task of setting up the electron
beamline for the AWAKE experiment. The beamline
requires frequent optimization to maintain the brightness
of the beam. Agents were pretrained on a simulation of the
AWAKE machinery and fine-tuned and tested on the actual
hardware. The final agents were able to reach their target in
less than ten iterations and performed significantly better
than numerical optimizers, which needed up to several
hundred iterations. However, after a few days, the perfor-
mance of the RL agents declined, possibly due to envi-
ronment drift. Velotti et al. conclude that the operational
deployment of RL agents is impossible unless this problem
is solved [13].
Hirlaender et al. evaluated Meta-RL for tuning the

AWAKE beamline [22]. They employed Model Agnostic
Meta Learning (MAML) [23] to tackle the problem of
partial observability. The technique operates on a distribu-
tion of environments, induced by the distribution of the
unobserved state components. During pretraining, MAML
aims to find model weights that can be quickly fine-tuned
for a specific environment drawn from the distribution. The
authors observed fast adaptation capabilities on the accel-
erator [22].
Meier et al. optimized a radio-frequency gun with RL

[24]. Starting from physical simulations, they first trained a
surrogate model represented by a neural network. Using
this surrogate model, they trained and evaluated an RL
agent, which outperformed numerical optimizers [24].
St. John et al. developed a controller for the gradient
magnet power supply of the booster synchrotron at
Fermilab [25]. On a surrogate model of the accelerator,
the RL agent, based on a double deep Q-network (DQN,
[26]), showed significant improvement compared to a
numerical proportional-integral-derivative controller [25].

Bruchon et al. leveraged RL to perform two tasks at a
free-electron laser (FEL): reaching a target intensity and
recovering the target intensity after machine perturbations
[27]. For the first task, deep Q-Learning [28] was used, and
for the second, REINFORCE [29] with natural policy
gradients [30].
Bruchon et al. proposed an online iterative linear

quadratic regulator (iLQR) to align the seed laser of the
FERMI FEL with the electron beam [31]. They modeled
the system response using a neural network trained on
experimental data and used the iLQR algorithm to compute
an optimal control sequence. Only the first control input
was applied at each step, followed by reoptimization based
on the updated system state, thereby mitigating model-plant
mismatches. The approach successfully resolved the align-
ment problem and outperformed gradient ascent by requir-
ing fewer iterations [31].
O’Shea et al. used RL based on policy gradients for three

optimization problems arising for the FEL at Elettra: opti-
mizing the signal at a beamline, maximizing the FEL energy
after the seed laser energy is reduced, and recovering the
output energy of the FEL after perturbations [32].
Chen et al. used RL for trajectory correction at the China

Accelerator Facility for Superheavy Elements (CAFe II)
[15]. Their TD3-based agent employs a convolutional
policy network. It was trained in a simulation environment
and then directly applied to the actual hardware. The agent
was able to correct the trajectory of the 40Ca13þ particle to
less than 1 mm RMSD in under 15 s. They also trained an
agent on 55Mn18þ particles and applied it to 40Ca13þ
particles and protons without retraining. The agent was
able to correct both orbits to less than 1 mm RMSD [15].
The authors provided the trend from the beam position
monitor to the agent, thereby equipping the agent with a
form of “memory.”
Kaiser et al. developed a TD3-agent for the control of the

transverse electron beam of a linear accelerator at the
Accelerator Research Experiment at Sinbad [18]. The agent
was entirely trained via simulation. The authors random-
ized the nonobservable components of the state during
training. Their agent achieves similar losses as numerical
optimizers but attains them much faster [18].
Wang et al. investigated RL for automated tuning of the

off-line ion source beamline at TRIUMF [14]. The internal
state of their beamline is not fully measurable, hence their
agents’ environment is only partially observable. They
employed the deep deterministic policy gradient algorithm
(DDPG) with a recurrent policy network, namely a long
short-term memory (LSTM) [33] network.
In contrast to the studies reviewed above, our approach

differs in several key aspects. While several prior works
used deep RL algorithms such as deep deterministic policy
gradient (DDPG) [14], twin delayed DDPG (TD3)
[13,15,18], or normalized advantage functions (NAF)
[11], we employ proximal policy optimization (PPO) [8]

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-2



with an LSTM, which is particularly suited to partially
observable environments. To mitigate the effects of
environment drift, we expose the agent to diverse training
scenarios with stochastic noise, following the strategy
of domain randomization [18], but in combination
with a memory-based agent architecture (PPO with
LSTM). Unlike approaches relying on surrogate models
[24,25,31], our method is based on a fast transfer map
model. In contrast to agents using fixed-length observa-
tion histories, such as convolutional encoders [15] or
finite-window LSTM architectures [14], our recurrent
PPO agent maintains an internal memory state, allowing
it to leverage information from the entire trajectory.
Finally, for the first time, we successfully applied a
recurrent agent to a particle accelerator.

III. METHODS

A. The SPS injection system

Preaccelerated particles are delivered via a transfer line
(TT10) to the SPS. The SPS injection system is located at
the end of the transfer line. The main electromagnetic
elements are septa, followed by a defocusing quadrupole
and the injection kickers. Figure 1 shows a schematic of the
injection system.
The quadrupole and the septa maintain a static magnetic

field. The injection kickers are only powered at injection to
deflect the incoming beam onto the design orbit [34]. These
kickers are referred to as MKPs. They are fast-pulsed, that
is, their voltage rises within tens of nanoseconds to their
design voltage. There are 16 kicker magnets in four vacuum
tanks. The kickers are grouped in pairs, and each pair shares
an electric circuit which includes an electrical switch that
controls whether the respective kickers are active or not
[35]. The start of the injection procedure is marked by an
electrical signal that is synchronized with the injected
beam. After roughly 5000 ns, the injected beam reaches
the kickers. The times at which the electrical switches
trigger can be controlled individually for each switch by
setting a delay relative to the start of the injection.

The time that passes between the kicker’s current reach-
ing ϵ% and ð100 − ϵÞ% of the respective design current is
referred to as rise time. A common choice is ϵ ¼ 2 [35].
The rise times impose a lower boundary on the feasible
choices for the batch spacing. A change in rise time might
necessitate a correction in the corresponding delay to
ensure optimal alignment with the beams. Analysis of
historical rise times has revealed frequent changes in rise
time for some of the MKPs (Appendix A).

B. Reinforcement learning approach

As commonly done in RL, we conceptualize the agent’s
environment as a partially observable Markov decision
process (POMDP). Let ΔðXÞ denote the set of probability
distributions over the set X. We describe the POMDP by the
state space S, the action space A, the observation space O,
the observation map S → ΔðOÞ, a stationary Markovian
conditional probability system Pðstþ1jst; atÞ where at ∈A
and st; stþ1 ∈ S, and a reward function r∶ S × A → ΔðRÞ.
The aim of the agent is to employ a policy O → ΔðAÞ that
maximizes the discounted expected continuation rewardP∞

τ¼t γ
k−trðsk; akÞ where γ ∈ ð0; 1Þ denotes the discount

factor. Conceptually γ is a part of the definition of the
POMDP, but in practice, the discount factor is rather akin to
a hyperparameter. Due to partial observability, the agent
must learn to extract the relevant information on the true
state from the history ðo0; a0; r0;…; ot−1; at−1; rt−1Þ. We
refer to [36] for a detailed discussion of POMDPs in the
context of RL.

C. Algorithm

We employ proximal policy optimization (PPO [8]). The
agent’s policy is determined by an artificial neural network
(ANN), the policy network, with a parameter vector w. Its
output is a vector of Gauss-distributed random variables,
the parametrization of which is determined by the ANN. In
the following, πwð:jsÞ denotes the stochastic policy induced
by the weights of the policy network and conditioned on the
state s∈ S, which the policy network takes as input.
Furthermore, let a∈A be an action, ϵ∈ ð0; 1Þ and wk

FIG. 1. Schematic of the control system for the SPS injection kickers. The 16 magnet modules (M1–M16) are powered in pairs of two.
Each circuit is controlled by the delay of an electrical switch (S1–S8). The objective is to minimize deviations from the reference
trajectory at a beam position monitor (BPM) downstream.

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-3



the weights at the kth gradient step. During training, ANNs
are used to approximate the Q-function Qπw∶ S × A → R
that approximates the expected on-policy continuation
reward of a state-action combination and the value function
Vπw∶ S → R that approximates the expected on-policy
continuation reward from a state. The objective function
for policy updates, stated in Eq. (1), relies on the advantage
function Aπwðs; aÞ ¼ Qπwðs; aÞ − VπwðsÞ.

Lwk
ðwÞ¼E

�
min

�
πwðajsÞ
πwk

ðajsÞA
πwk ðs;aÞ;gðϵ;Aπwk ðs;aÞÞ

��
;

gðϵ;AÞ¼
(
ð1þϵÞA ifA≥0
ð1−ϵÞAotherwise:

(1)

Equation (1) increases the likelihood of actions with
positive advantage and decreases the likelihood of actions
with negative advantage. Taking the minimum ensures that
the updated policy stays in the proximity of the previous
policy [37].

D. PPO with history

The agent’s observations in a POMDP may lack crucial
information on the state that may be deduced from the
history of observations, actions, and rewards (Sec. III B).
An LSTM network can be integrated into the policy
network of PPO, enabling it to leverage the information
contained in the history. At each step, the LSTM network
takes the current observation and its current internal state as
input and outputs the next internal state. The policy
network itself is fully connected and maps the internal
state of the LSTM network to the distribution parameters
[38]. Figure 2 illustrates this concept. In the present study,
we employ a reference implementation of LSTM-PPO
(stable-baselines3 [39,40], stable-baselines3-contrib [39]).

E. Data

To set up the simulation environment, we used 100
waveform measurements from the SPS injection system
gathered between September 2021 and August 2022. Each
set contains 16 waveforms, one per kicker magnet. Each
waveform is measured over 40,000 ns with a spacing of

2 ns. Consequently, each waveform is a time series of
20,000 datapoints. The data used in this study are publicly
available [9].

F. Action space

The action space corresponds to adjustments to the eight
kicker delays (see Sec. III A for details). Actions are
encoded as at ∈ ½−1; 1�8. Actions are converted to nano-
seconds by multiplication with a suitably chosen scaling
factor δmax, which we refer to as step size, and the delays
τ∈ ½0;∞Þ8 are updated according to τtþ1 ¼ τt þ δmaxat.
Figure 3 displays a waveform, the corresponding kicks with
a batch spacing of 200 ns, and illustrates the effect of taking
an action.

G. Observation space

The observation space consists of the values of the 8
waveforms on an equidistant grid of size 33 covering a time
window of 256 ns (see Fig. 4). There are thus 264 numbers
describing the waveforms to the agent. We additionally
provide the agent with the horizontal deviations of the
injected and the circulating beam, making for an observed
state of 266 dimensions, which we represent in the hyper-
cube ½−1; 1�266. Our preprocessing of the waveforms
consists of setting any negative values in the waveforms

FIG. 2. Schematic of recurrent neural architecture for PPO. At each time step i, the LSTM network takes an observation oi and the
current internal state hi as input and outputs the next internal state hiþ1. The policy network maps hiþ1 to the parameters of the
distribution from which the action ai is drawn. The initial internal state of the LSTM (h0) is a zero vector.

FIG. 3. The effect of an action on a single waveform. The
vertical dashed lines indicate the timestamps of the circulating
and the injected beam which are spaced by 200 ns. The horizontal
dashed lines correspond to the design strength of the kicks.

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-4



to zero and then using the minimum and the maximum of
each waveform to scale the waveforms’ values to the
interval ½−1; 1�. The 17th waveform value in our grid
corresponds to the timestamp exactly halfway between the
circulating and injected beam. The time window is chosen
relative to the current position of the injected beam. In the
real hardware, the corresponding time has to be estimated.

H. Rewards

Let xi and xc be the horizontal beam deviations of the
injected and the circulating beam, respectively. We want to
minimize the loss function

Lðxi; xcÞ ¼ x2i þ x2c þ ðxi − xcÞ2; (2)

that is the sum of the squared deviations of the injected and
the circulating beam from their design trajectories and the
squared deviation of the injected and the circulating
beam from each other. The reward function of the agent
is a negative affine transformation of this loss function,
namely Rðxi; xcÞ ¼ θ1 − θ2Lðxi; xcÞ for conveniently
chosen θ1; θ2 > 0.

I. Starting state

The initial delays τ0 ∈R8 are randomly drawn at the
beginning of each simulated episode according to
ðτ0Þi ¼ uþ vi;i ¼ 1;…; 8. Here, u ∼ Nð4750 ns; 10 nsÞ
represents a time difference from the start of the injection
sequence, which is applied as a delay to all eight switches.
Furthermore, vi ∼ Nð0 ns; 5 nsÞ i ¼ 1;…; 8 is an individ-
ual delay for each switch, applied additionally. For each
episode, one of 80 sets of waveforms is randomly chosen
and augmented. For each switch, a stretching factor fi ∼
Uð0; 0.2Þ is independently drawn. New data points are
generated by linear interpolation of adjacent points to
obtain a waveform of the required length. As data points
are still considered to be separated by 2 ns, the waveform is
effectively stretched by the factor ð1þ fiÞ. We do not
stretch the entire waveform because doing so might shift
the rising edge by an unrealistic amount.

J. Episode end

The control problem is conceptualized as a continuing
problem without terminal states. During training, we
truncate an episode in two cases: First, if there have been
1000 adjustment steps, or, second, if at least one of the
delays differs by more than 1000 ns from its starting value.
Unlike terminal states, which imply a zero continuation
value, the agent is expected to continue collecting rewards
beyond the truncation point. An estimate of this continu-
ation value is then taken into account when updating the
policy network. The intention of this procedure is to expose
agents to diverse waveforms, which are resampled at the
start of each episode, and to avoid wasteful exploration
extremely far from the optimum.

K. Simulation of the SPS injection system

Using the current delays, the kicks imparted to the
circulating and the injected beam by the magnets are
calculated. This is illustrated in Fig. 3, where the kicks
correspond to the amplitudes of the waveform at the
intersections with the dashed vertical lines, representing
the timestamps of the circulating and the injected beam. To
further encourage the learning of a noise-robust strategy,
time shifts are applied to the injected and the circulating
beam during our simulations. These shifts, which we call
hidden delays, do not affect the waveforms provided to the
agent. For each switch, the hidden delay τ�i is randomly
determined at the start of each episode and equals

τ�i ¼ cþ di; i;…; 8; (3)

where i∈ f1;…; 8g, c ∼Uð−20 ns; 20 nsÞ, and di∼
Uð−15 ns; 15 nsÞ. The common shift c simulates an error
in the estimation of the injected beam’s detection time. The
individual shifts di represent errors in the measurements of
the waveforms. Due to these unobserved hidden delays, the
environment is partially observable. We also performed
experiments on a version of the environment with these
hidden delays set to zero, which we refer to as the fully
observable environment.
Starting from the center of the first vacuum tank, we

simulate the transport of the beam centroids of the two
beams to a beam position monitor (BPM). Initially, both
centroids are assumed to be on the reference trajectory;
hence, their initial condition equals zero. To remain on the
reference trajectory, the circulating beam would have to
receive zero deflection. On the other hand, the injected
beam would have to receive a specific total deflection (see
Fig. 3). The differences between the occurred kicks and
these ideal kicks are calculated. Then, the simulation
aggregates the kick differences per vacuum tank and
applies them as kicks to the beam at the center of the
respective tank (thin kick approximation). Hence, four
kicks are applied to each beam. Finally, the beam centroids

FIG. 4. Visualization of the observation space. Each waveform
is presented to the agent as 33 discrete points.

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-5



are propagated from the last vacuum tank to the BPM via a
second-order Taylor approximation of the transfer map,
which was calculated with MAD-X [41].

IV. RESULTS

A. Performance in the simulation environment

The maximal step size (Sec. III F) of the environment
can be chosen freely. The training complexity seems to
increase with the maximal step size and the simulation-
reality gap might widen due to the absence of highly
nonlinear effects in our simulation environment. Four
different step sizes (5, 10, 15, and 20 ns) were considered.
Hyperparamter tuning was conducted for each step size.
Due to the results of these experiments (Appendix B), we
settled on the step size of 15 ns. The obtained agents were
evaluated against the numerical optimization algorithm
that is currently employed at CERN, BOBYQA, with a
global optimization heuristic [42,43]. The agents were
evaluated over 10,000 seeded episodes with a length of
1000 steps each. For each of those episodes, the median
loss was calculated. Afterward, the same seeds were used
to run BOBYQA 10,000 times with a budget of 1000 steps
for each optimization. The smallest obtained loss and the
number of steps required to reach this minimum were
recorded for each of these optimizations. We report the
percentage relative difference in loss. The relative loss
difference is appropriate since the minimum loss varies
with the waveforms, which are randomized each episode.
The results of LSTM-PPO (see Appendix C for hyper-
parameters) for fully and partially observable environ-
ments are shown in Fig. 5. In the partially observable case,
hidden delays are enabled, while in the fully observable
case, the hidden delays are set to zero (see Sec. III K). The
unrealistic case of a fully observable training and testing
environment is provided for reference (Fig. 5, left). While
the agent trained on the fully observable environment
performed very well when the evaluation environment
was also fully observable, its performance degraded
severely when evaluated on the partially observable
environment (Fig. 5, middle). This mimics transferring
an agent from a fully observable simulation to the partially
observable real accelerator and highlights the importance
of including uncertainties in the training environment. The
practically relevant case corresponds to training and
testing on the partially observable environment (Fig. 5,
right). Here, LSTM-PPO performed on average 2.73%
worse than BOBYQA. During experiments on the accel-
erator, deviations less than 5% from the optimum found
through numerical optimization yielded satisfying injec-
tion performance. Hence, the agents performance is well
within the acceptable range. Furthermore, the median
number of steps required by LSTM-PPO to reach stable
behavior is 7, while the analogous number for BOBYQA
was 246. Therefore, the use of RL allows a significant
speed-up.

B. Performance on the accelerator

An agent was trained in the simulated environment and
directly deployed to the accelerator. There were two key
steps during this transfer: determining the timestamp of the
injected beam and shifting the waveform data such that the
time of flight is taken into account. The first step provides a
reference point to determine which points from the wave-
form data should be extracted for the state information. The
second step removes a gap between simulation and reality:
in the simulation environment, the entire waveform is
processed at once. This allowed a convenient implementa-
tion and does not impact the optimization problem.
However, in reality, it takes some time for the beam to
travel between the magnets. Therefore, the raw waveform
data have to be shifted accordingly.
LSTM-PPO was evaluated in two trials. Both trials were

started with the optimized delays found by BOBYQA. After
the agent took four steps, a random switch was selected and
the corresponding delay was randomly changed by
δ∈ ½−10;−5� ∪ ½5; 10�. Thereafter, this procedure was
repeated every seventh supercycle, so the agent had six
opportunities to correct the settings after each perturbation.
The size of the perturbations was rather small as the impact
on other cycles during the experiments had to be small. The
results of these trials are shown in Fig. 6. The agent
purposefully moved toward a state that it deemed desirable
and counteracted perturbations to recover that state. In both
trials, the agent seemed to prefer the same settings. This
stable statewas not the optimumof the optimizationproblem,
as some random perturbations yielded an improvement in

FIG. 5. Boxplots of relative differences in loss between LSTM-
PPO and BOBYQA over 10,000 episodes. Left: training and
evaluation on a fully observable environment (f). Middle: training
on a fully observable environment and evaluation on a partially
observable environment (p). The whisker was cut at 60% but
extends to 184.12%. Right: training and evaluation on the
partially observable environment. For the RL agents, the median
loss of each episode was calculated, for BOBYQA, the minimal
loss found in each episode was taken. Negative relative loss
differences indicate that the agents outperformed BOBYQA.

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-6



reward (e.g., the second random action in the bottom-right
panel of Fig. 6). Comparing the initial reward of each episode
with later rewards, one can conclude that the agent performed
slightly worse than BOBYQA. Nonetheless, the agent
maintained adequate operational settings (see Fig. 7).

V. DISCUSSION

This paper has shown that a robust simulation environ-
ment, incorporating variations, such as different waveforms,
random changes in rise time, and variability in initial delays,
is essential to obtain effective agents. Hidden delays and
simulated measurement errors lead to a formulation as a
partially observable Markov decision problem. LSTM-PPO,
designed for partially observable environments, proved
effective. The agent’s actions clearly showed the intention
of reaching and maintaining a specific state close to the
optimum found by numerical optimization (BOBYQA).

The present study seems to be the first successful
application of RL with recurrent policy networks to
accelerator physics. While one prior study evaluated a
recurrent version of DDPG, it was limited to simulations
[14]. Since many problems in accelerator control are
partially observable, recurrent neural networks may be
well suited for the domain. The present study demonstrates
the feasibility of training RL agents in a simulation
environment and successfully transferring them to real-
world accelerator operations.
This paper trains its agent in a simulated environment.

Even sample-efficient algorithms for online training are not
applicable to our use case since variations of the system are
sparse and infrequent (see Appendix A). Hence, one would
have to collect training data over months, which is
incompatible with accelerator operations.
Meta-RL mitigates the discrepancies between simulated

and real-world environments by pretraining agents in

FIG. 6. Performance of LSTM-PPO during the two trials on the accelerator. Up: rewards during the trial. Down: cumulative changes in
delays. The dashed vertical lines indicate a random perturbation.

FIG. 7. The final waveforms of the two trials on the accelerator. Both configurations are valid working points, with a small
perturbation to the circulating beam and large kicks to the injected beam.

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-7



simulation, enabling them to rapidly adapt to new real-
world conditions with minimal interaction. While this
framework could be applicable to our use case, it inherently
relies on an adaptation phase for each realization of the
stochastic environment. In contrast, our agent is designed to
act without requiring such an adaptation period, truly
functioning as an active controller.

VI. CONCLUSION

When RL is applied to particle accelerator control, the
challenge of transferring the agent from a simulated
environment to the actual machine arises. This paper
highlighted the importance of incorporating adequate
variation and partial observability into the training envi-
ronment. Recurrent policies, which are designed for par-
tially observable environments, proved to be effective.
During simulation, LSTM-PPO required an order of
magnitude fewer steps than the numerical optimizer
BOBYQA. The RL agent performed 2.73% worse than
BOBYQA on average. Trials on the accelerator are con-
sistent with the simulations: the agent optimizes much
faster but attains slightly worse solutions.
Further research is required to completely replace

BOBYQA with an RL agent and to deploy such an agent
as an active controller during operation. Future research

should also consider a representation of the waveforms that
is invariant under a common temporal shift applied to all
signals, thereby removing the need to estimate the time of
injection. Adjustments to the simulation environment could
reduce the simulation-reality gap (Appendix D). The results
of this paper encourage further research on memory-based
deep RL policies in accelerator physics.

DATA AVAILABILITY

The data that support the findings of this article are
openly available [9].

APPENDIX A: RISE TIME ANALYSIS

Historical rise time data from May 26 until October 10,
2023 were analyzed for all eight magnet pairs: on the first
switch of the MKP, there seem to be frequent changes in
rise time. Such changes are detrimental to kicker perfor-
mance. The second magnet exhibits similar behavior at a
lower amplitude, as shown in Fig. 8. All other magnets
appear to be rather stable within the observed time frame.
Generally, significant changes of rise times are rare and
might not occur at all over the course of months. To expose
an agent to diverse experiences using the actual accelerator,
one would have to train it for multiple months.

FIG. 8. The rise times of the eight magnet pairs between May 26, 2023 and October 10, 2023.

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-8



Disregarding the extreme variability of switch 1, the
largest deviation from the median was 20.88%, exhibited
by switch 7. The median rise time of switch 3 was up to
25.42% higher than the median rise times of switches 1, 2,
4, 5, and 6, which are of the same type. Descriptive
statistics for all eight switches are provided in Table I.
Based on these numbers, it was decided to increase the rise
times of historical waveforms by up to 20% during agent
training. Furthermore, the sets of waveforms collected for
agent training were studied. The flattops, which are
assumed to correspond to the design kick, were estimated
using a method proposed by Waagard [2]: for each wave-
form, the data points less than 96% of its maximum were
set to zero. Then we obtained, via differential evolution, the
boxcar function that minimizes the sum of squared errors.
The flattop estimate equals the height of the boxcar
function. The waveforms are vaguely sigmoidal, with
initially steep rising edges that reach an inflection point
well before the flattop. Consequently, a nonmitigable error
remains for the injected beam.

APPENDIX B: COMPARISON OF STEP SIZES

The agent changes the delays by δ∈ ½−δmax; δmax�8 each
step, as outlined in Sec. III F. The maximum step size, δmax,
can be freely chosen; however, practical aspects should be
considered. Given the median rise times of less than 50 ns,
δmax can be set smaller than the batch spacing of 200 ns,

and the optimal solution will still reachable within one step
for all sensible initial delays. Another aspect is training
complexity: given two environments with step sizes δ1 and
δ2, where δ1 < δ2, every policy applicable to the first
environment can also be applied to the second environ-
ment; however, the reverse does not hold true. Therefore,
the training complexity increases with the step size.
Furthermore, the simulation-reality gap might widen with
increasing step size due to nonlinear effects or random
variations in the accelerator.
Four different step sizes (5, 10, 15, and 20 ns) were

evaluated empirically with simulated environments in order
to find the optimal step size for the real environment. Those
environments were fully observable as the option to include
hidden delays was added in a later iteration. Hyperparamter
tuning was conducted for each step size using the Optuna
framework [44]: first, one has to define a search space by
specifying an interval or a list of eligible values for each
hyperparameter. Then, Optuna uses a sampler and a pruner
for the hyperparameter optimization. The sampler suggests
which combinations of hyperparameters to evaluate, and
the pruner stops a trial early if certain termination con-
ditions are met. Optuna readily provides different samplers
and pruners. For pruning, MedianPruner was chosen,
which cuts a trial short if it performed worse than the
median performance of previous trials at intermediate
evaluations [44]. For sampling, a simple grid search was
performed. The evaluated hyperparameters and their

TABLE I. Descriptive statistics for the historical rise times of the eight magnet pairs.

S1 S2 S3 S4 S5 S6 S7 S8

Mean 51.16 44.74 53.77 42.60 42.87 43.53 42.99 41.00
Std 19.51 1.11 0.30 0.94 0.12 0.24 0.31 0.12
Min 28.75 43.48 0.22 0.27 41.63 41.52 40.51 39.12
25% 43.84 43.98 53.71 41.75 42.84 43.38 42.89 40.93
50% 43.95 44.10 53.78 42.30 42.88 43.45 42.96 41.01
75% 44.03 45.30 53.85 43.66 42.93 43.72 43.05 41.09
Max 104.28 51.08 55.30 44.78 43.77 45.28 51.93 48.93

TABLE II. Optimal hyperparameter combinations and performance metrics for PPO, identified individually for four step sizes. The
eligible values for each hyperparameter are shown in the column “Values.” The loss of an episode is calculated as the median of the
losses of all steps of that episode. Performance metrics were calculated with 100 evaluation episodes.

Hyperparameter 5 ns 10 ns 15 ns 20 ns Values

Gamma 0.85 0.9 0.85 0.85 f0.85; 0.9; 0.95; 0.99g
Learning rate 3 × 10−5 3 × 10−4 3 × 10−4 3 × 10−4 3 · f10−5; 10−4; 10−3; 10−2g
Batch size 16 64 8 16 f8; 16; 32; 64; 128g
No. of hidden layers 2 1 1 2 f1; 2g
No. of nodes per layer 64 128 32 16 f16; 32; 64; 128g
Performance metric
Mean loss 2.419 × 10−4 2.435 × 10−4 2.431 × 10−4 2.433 × 10−4
Median steps until stable 10 7 4 7
Mean reward sum 683.27 680.19 681.25 680.52

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-9



respective values for the grid search are given in Table II.
All other available hyperparameters were set to the default
chosen in the stable-baselines3 implementation of PPO (see
[40] for the default values). The maximum budget per trial
was 106 steps. Every 2.5 × 105 steps, the agents were
evaluated on a differently seeded environment, and
unpromising trials were pruned. The vast majority of the
hyperparameters performed similarly, only the largest
evaluated learning rate of 3 × 10−2 was clearly worse.
The stability of the behavior close to aminimum is another

important aspect, especially for an active controller. In order
to quantify stability, a formal definition is needed. Given the
rewards R0; R1;… of an episode, the agent's behavior
became stable after n steps if Rm ≥ 0.95maxðRÞ; ∀m ≥ n:
The agents were compared based on the reward sum, the
achieved loss and the amount of steps it took to become
stable, which are all shown in Table II. The reward sums and
losses were very close between all step sizes. The smallest
step size performed the best in that regard. Stable behavior
was reached the fastest with a step size of 15 ns. Overall, a
step size of 15 ns seems to be the best trade-off between
stability, speed, and achieved loss.

APPENDIX C: HYPERPARAMTER-TUNING
FOR LSTM-PPO

The eligible values and the best combination of hyper-
parameters for LSTM-PPO are shown in Table III. Again,
the Optuna framework [44] was used for hyperparameter
tuning. For pruning, MedianPruner was chosen as for PPO.
For sampling, TPESampler was used, which relies on the
Tree of Parzen Estimators (TPE) algorithm [44].
For each hyperparameter, the TPE algorithm splits the
values used in previous trials into two groups according to
the loss that was achieved in their respective trials. Then,
the algorithm fits a Gaussian mixture model (GMM) lðxÞ to
the well-performing hyperparameter values and another

GMM gðxÞ to the remaining hyperparameter values before
each trial. Finally, it chooses the hyperparameter value for
the trial by maximizing lðxÞ=gðxÞ [45,46].

APPENDIX D: SIMULATION-REALITY GAP

The logged waveforms and the estimated timestamp of
the injected beam (5040 ns) from the accelerator trials were
used to parametrize the simulation environment, thereby
matching the simulation to the trials. We retrieved the
simulated BPM data and the corresponding reward. By
comparing this data to the real data collected during the
trials, one can elucidate the simulation-reality gap. Figure 9
(left panel) reveals that the horizontal deviations of the
injected beam are significantly smaller in reality than in the
simulation. For the circulating beam, the reverse holds true,
the horizontal deviations in the accelerator are much larger
than expected (Fig. 9, middle panel). Both effects could be
caused by an incorrect estimation of the flat top. As the
linear conversion from voltage to kick depends on the
flattop (which was assumed to correspond to the design
kick for the injected beam), a lower estimate of the flattop
would result in larger simulated kicks. In turn, the devia-
tions of the injected beam would decrease, and the
deviations of the circulating beam would increase, closing
the gap between simulation and accelerator. The difference
in scale between the injected and circulating beam, in
conjunction with the quadratic loss function, causes the loss
to be more sensitive toward the deviation of the injected
beam. Also, the role of the term in the loss function that
penalizes differences between the deviations of the beams
(Sec. III H) is overemphasized. This can be seen in Fig. 9
(Right panel) by comparing the simulated deviations and
reward of step 2 and step 4. Both the deviations of the
injected and circulating beam decreased from step 2 to step
4. Yet the reward of step 2 is larger than the reward of step 4
because the improvement of the deviations of the

TABLE III. Hyperparameter tuning for LSTM-PPO. The eligible values for the TPE algorithm were either
intervals or sets and are displayed in the second column. The third column shows the best combination of
hyperparameters found during the study.

Hyperparameter Values Best

Gamma ½0.5; 1� 0.63
Learning rate ½10−5; 1� 5.47 × 10−5
n_steps f23; 24; 25; 26; 27; 28; 29; 210; 211g 211

Batch size f23; 24; 25; 26; 27; 28; 29g 28

n_epochs f1; 5; 10; 20g 20
ent_coef ½10−8; 10−1� 2 × 10−3
gae_lambda f0.8; 0.9; 0.92; 0.95; 0.98; 0.99; 1g 0.92
max_grad_norm f0.3; 0.5; 0.6; 0.7; 0.8; 0.9; 1; 2; 5g 2
clip_range f0.1; 0.2; 0.3; 0.4g 0.1
vf_coef ½0; 1� 0.95
No. of hidden layers f1; 2g 1
No. of nodes per layer f16; 32; 64; 128g 32
lstm hidden size f8; 16; 32; 64g 32

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-10



circulating beam is overpowered by the third term of the
loss function.
The general trend of the deviations is similar for the

circulating beam but opposite for the injected beam. An
incorrect estimation of the timestamp of the injected beam
(general shift) and errors in the waveform measurements
(individual shifts) could explain this effect: the true values
of the shifts are unknown on the accelerator and cannot be
taken into account before feeding the waveforms into the
simulation. Due to the ripple after the rising edge of the
waveforms, the injected beam is more sensitive toward
these shifts. The training environment includes random
general and individual shifts, emulating this mismatch
between waveforms and BPM data (Sec. III K). Even
though the agents have been exposed to such shifts during
training, their performance could still have been negatively
impacted (see Fig. 5).
In the simulated environment, the shape of the wave-

forms is determined at the start of each episode and does
not change throughout. On the accelerator, many small
changes might occur during an episode. Figure 6 shows two
evaluation episodes on the accelerator. The second episode
was started less than 30 min after the first episode and with
the same initial delays. A single episode on the simulation
environment would cover multiple hours of accelerator
operation. Therefore, it is reasonable to compare the initial
rewards and waveforms of the two episodes on the
accelerator to estimate intraepisode variation. The initial
rewards of these episodes differ by 3.2%. The respective
waveforms differ by up to 13.3%. The largest deviations
occur at the start of the rising edge, likely since the steep
slope renders the system more sensitive. After the halfway
point toward the flattop, the deviations are much smaller, at
most 3.6%.

[1] W. Bartmann, M. Barnes, J. Boyd, E. Carlier, A.
Chmielinska, B. Goddard, G. Kotzian, C. Schwick, L.
Stoel, D. Valuch, F. Velotti, V. Vlachodimitropoulos, and

C. Wiesner, Impact of LHC and SPS injection kicker rise
times on LHC filling schemes and luminosity reach, in
Proceedings of the International Particle Accelerator
Conference (IPAC-2017) (JACoW, Geneva, Switzerland,
2017), pp. 2043–2046.

[2] E. Waagaard, Optimising the present and designing the
future: A novel SPS injection system, Master’s thesis,
Uppsala University, Uppsala, Sweden, 2022, https://cds
.cern.ch/record/2813209.

[3] M. Powell, The BOBYQA algorithm for bound con-
strained optimization without derivatives, Technical Report
No. 2009/NA06, University of Cambridge, Department of
Applied Mathematics and Theoretical Physics, 2009.

[4] I. Bogunovic, J. Scarlett, and V. Cevher, Time-varying
Gaussian process bandit optimization, in Proceedings of
the 19th International Conference on Artificial Intelligence
and Statistics, Volume 51 of Proceedings of Machine
Learning Research, Cadiz, Spain, edited by A. Gretton
and C. C. Robert (2016), pp. 314–323, https://proceedings
.mlr.press/v51/bogunovic16.html.

[5] N. Kuklev et al., Robust adaptive Bayesian optimization, in
Proceedings of the 14th International Particle Accelerator
Conference, IPAC-2023 (JACoW, Geneva, Switzerland,
2023), pp. 4428–4431, 10.18429/JACoW-IPAC2023-
THPL007.

[6] N. Kuklev, M. Borland, G. Fystro, H. Shang, and Y. Sun,
Online accelerator tuning with adaptive Bayesian optimi-
zation, in Proceedings of the 5th International Particle
Accelerator Conference (NAPAC’22), Number 5 in
International Particle Accelerator Conference (JACoW,
Geneva, Switzerland, 2022), Vol. 10, pp. 842–845,
10.18429/JACoW-NAPAC2022-THXD4.

[7] R. Roussel et al., Bayesian optimization algorithms for
accelerator physics, Phys. Rev. Accel. Beams 27, 084801
(2024).

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv:
1707.06347.

[9] M. Remta, mkp-delays-rl, GitLab, 2024, https://gitlab.cern
.ch/mremta/mkp-delays-rl [accessed January 8, 2025].

[10] L. Grech, G. Valentino, D. Alves, and S. Hirlaender,
Application of reinforcement learning in the LHC tune
feedback, Front. Phys. 10, 929064 (2022).

FIG. 9. Comparison of simulation and accelerator with respect to the horizontal deviations of the injected beam (left panel), the
horizontal deviations of the circulating beam (central panel) and reward (right panel). The waveforms and BPM data are taken from the
second evaluation episode on the accelerator (see Fig. 6).

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-11

https://cds.cern.ch/record/2813209
https://cds.cern.ch/record/2813209
https://cds.cern.ch/record/2813209
https://proceedings.mlr.press/v51/bogunovic16.html
https://proceedings.mlr.press/v51/bogunovic16.html
https://proceedings.mlr.press/v51/bogunovic16.html
https://proceedings.mlr.press/v51/bogunovic16.html
https://doi.org/10.18429/JACoW-IPAC2023-THPL007
https://doi.org/10.18429/JACoW-IPAC2023-THPL007
https://doi.org/10.18429/JACoW-NAPAC2022-THXD4
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://arXiv.org/abs/1707.06347
https://arXiv.org/abs/1707.06347
https://gitlab.cern.ch/mremta/mkp-delays-rl
https://gitlab.cern.ch/mremta/mkp-delays-rl
https://gitlab.cern.ch/mremta/mkp-delays-rl
https://doi.org/10.3389/fphy.2022.929064


[11] V. Kain, S. Hirlander, B. Goddard, F. M. Velotti,
G. Z. Della Porta, N. Bruchon, and G. Valentino, Sam-
ple-efficient reinforcement learning for CERN accelerator
control, Phys. Rev. Accel. Beams 23, 124801 (2020).

[12] M. Schenk, E. F. Combarro, M. Grossi, V. Kain, K. S. B.
Li, M.-M. Popa, and S. Vallecorsa, Hybrid actor-critic
algorithm for quantum reinforcement learning at CERN
beam lines, arXiv:2209.11044.

[13] F. Velotti, B. Goddard, V. Kain, R. Ramjiawan, G. Porta,
and S. Hirlander, Towards automatic setup of 18 MeV
electron beamline using machine learning, Mach. Learn. 4,
025016 (2023).

[14] D. Wang, H. Bagri, C. Macdonald, S. Kiy, P. Jung, O.
Shelbaya, T. Planche, W. Fedorko, R. Baartman, and O.
Kester, Accelerator tuningwith deep reinforcement learning,
in Proceedings of the 4th Workshop on Machine
Learning and the Physical Sciences (2021), https://ml4-
physicalsciences.github.io/2021/files/NeurIPS_ML4PS_
2021_125.pdf.

[15] X. Chen, Y. Jia, X. Qi, Z. Wang, and Y. He, Orbit
correction based on improved reinforcement learning
algorithm, Phys. Rev. Accel. Beams 26, 044601 (2023).

[16] N. Madysa, R. Alemany-Fernández, N. Biancacci, B.
Goddard, V. Kain, and F. Velotti, Automated intensity
optimisation using reinforcement learning at LEIR, in
Proceedings of the13th International Particle Accelerator
Conference, IPAC-2022, Bangkok, Thailand (JACoW,
Geneva, Switzerland, 2022), pp. 941–944.

[17] M. Schram, K. Rajput, N. S. K. S., P. Li, J. St. John, and H.
Sharma, Uncertainty aware machine-learning-based surro-
gate models for particle accelerators: Study at the Fermilab
booster accelerator complex, Phys. Rev. Accel. Beams 26,
044602 (2023).

[18] J. Kaiser, O. Stein, and A. Eichler, Learning-based opti-
misation of particle accelerators under partial observability
without real-world training, in Proceedings of the 39th
International Conference on Machine Learning
(2022), pp. 10575–10585, https://proceedings.mlr.press/
v162/kaiser22a.html.

[19] J. Kaiser, C. Xu, A. Eichler, A. S. Garcia, O. Stein, E.
Bründermann, W. Kuropka, H. Dinter, F. Mayet, T.
Vinatier, F. Burkart, and H. Schlarb, Learning to do or
learning while doing: Reinforcement learning and Baye-
sian optimisation for online continuous tuning, arXiv:
2306.03739.

[20] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, Continuous
deep Q-learning with model-based acceleration, in Pro-
ceedings of the 33rd International Conference on Machine
Learning (2016), pp. 2829–2838, https://proceedings.mlr
.press/v48/gu16.html.

[21] S. Fujimoto, H. van Hoof, and D. Meger, Addressing
function approximation error in actor-critic methods, in
Proceedings of the 35th International Conference on
Machine Learning (2018), pp. 1587–1596, https://
proceedings.mlr.press/v80/fujimoto18a.html.

[22] S. Hirlaender, S. Pochaba, L. Lamminger, A. Santamaria
Garcia, C. Xu, J. Kaiser, A. Eichler, and V. Kain, Deep meta
reinforcement learning for rapid adaptation in linearMarkov
decision processes: Applications to CERN’s AWAKE
project, in Volume 1458 of Advances in Intelligent Systems

and Computing (Springer Nature, Switzerland, 2024),
10.1007/978-3-031-65993-5_21.

[23] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-
learning for fast adaptation of deep networks, in Proceed-
ings of the 34th International Conference on Machine
Learning, Volume 70 of Proceedings of Machine Learning
Research, edited by D. Precup and Y.W. Teh (2017),
pp. 1126–1135, https://proceedings.mlr.press/v70/finn17a
.html.

[24] D. Meier, L. V. Ramirez, J. Völker, J. Viefhaus, B. Sick,
and G. Hartmann, Optimizing a superconducting radio-
frequency gun using deep reinforcement learning, Phys.
Rev. Accel. Beams 25, 104604 (2022).

[25] J. St. John, C. Herwig, D. Kafkes, J. Mitrevski, W. A.
Pellico, G. N. Perdue, A. Quintero-Parra, B. A. Schupbach,
K. Seiya, N. Tran, M. Schram, J. M. Duarte, Y. Huang, and
R. Keller, Real-time artificial intelligence for accelerator
control: A study at the Fermilab booster, Phys. Rev. Accel.
Beams 24, 104601 (2021).

[26] H. Hasselt, Double q-learning, in Advances in Neural
Information Processing Systems, edited by J. Lafferty, C.
Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta
(Curran Associates, Inc., Red Hook, NY, 2010), Vol. 23,
https://proceedings.neurips.cc/paper_files/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[27] N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. H. O’Shea,
F. A. Pellegrino, and E. Salvato, Basic reinforcement
learning techniques to control the intensity of a seeded
free-electron laser, Electronics 9, 781 (2020).

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, Playing Atari
with deep reinforcement learning, arXiv:1312.5602.

[29] R. J. Williams, Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning, Mach.
Learn. 8, 229 (1992).

[30] S. M. Kakade, A natural policy gradient, in Proceedings of
the Advances in Neural Information Processing Systems
14, NIPS 2001 (2001), https://proceedings.neurips.cc/
paper_files/paper/2001/file/4b86abe48d358ecf194c56c69
108433e-Paper.pdf.

[31] N. Bruchon, G. Fenu, G. Gaio, S. Hirlaender, M. Lonza,
F. A. Pellegrino, and E. Salvato, An online iterative linear
quadratic approach for a satisfactory working point attain-
ment at Fermi, Information 12, 262 (2021).

[32] F. H. O’Shea, N. Bruchon, and G. Gaio, Policy gradient
methods for free-electron laser and terahertz source opti-
mization and stabilization at the Fermi free-electron laser at
Elettra, Phys. Rev. Accel. Beams 23, 122802 (2020).

[33] S. Hochreiter and J. Schmidhuber, Long short-term
memory, Neural Comput. 9, 1735 (1997).

[34] E. Waagaard, M. Barnes, W. Bartmann, V. Bencini, J.
Borburgh, L. Ducimetière, T. Kramer, T. Stadlbauer, P.
Trubacova, and F. Velotti, Design of a new CERN SPS
injection system via numerical optimisation, in Proceed-
ings of the 14th International Particle Accelerator
Conference (IPAC-2023) (JACoW, Geneva, Switzerland,
2023), pp. 267–270.

[35] J. Uythoven, The newSPS injection channel, inProceedings
of the 9th LEPPerformanceWorkshop (1999), pp. 120–125,
https://cds.cern.ch/record/398068.

REMTA, VELOTTI, and REZAGHOLI PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-12

https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://arXiv.org/abs/2209.11044
https://doi.org/10.1088/2632-2153/acce21
https://doi.org/10.1088/2632-2153/acce21
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://doi.org/10.1103/PhysRevAccelBeams.26.044601
https://doi.org/10.1103/PhysRevAccelBeams.26.044602
https://doi.org/10.1103/PhysRevAccelBeams.26.044602
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://arXiv.org/abs/2306.03739
https://arXiv.org/abs/2306.03739
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1007/978-3-031-65993-5_21
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1103/PhysRevAccelBeams.25.104604
https://doi.org/10.1103/PhysRevAccelBeams.25.104604
https://doi.org/10.1103/PhysRevAccelBeams.24.104601
https://doi.org/10.1103/PhysRevAccelBeams.24.104601
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.3390/electronics9050781
https://arXiv.org/abs/1312.5602
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1023/A:1022672621406
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://doi.org/10.3390/info12070262
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://doi.org/10.1162/neco.1997.9.8.1735
https://cds.cern.ch/record/398068
https://cds.cern.ch/record/398068
https://cds.cern.ch/record/398068


[36] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction, 2nd ed. (MIT Press, Cambridge, MA, 2018).

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv:
1707.06347.

[38] StableBaselines3, Recurrent PPO, https://sb3-contrib
.readthedocs.io/en/master/modules/ppo_recurrent.html
(2024) [accessed April 26, 2024].

[39] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus,
and N. Dormann, Stable-baselines3: Reliable reinforce-
ment learning implementations, J. Mach. Learn. Res. 22, 1
(2021), http://jmlr.org/papers/v22/20-1364.html.

[40] StableBaselines3, PPO, https://stable-baselines3.readthedocs
.io/en/master/modules/ppo.html (2024) [accessed February
12, 2024].

[41] MAD-X project, MAD-X: Methodical accelerator design,
https://cern.ch/madx (2025) [accessed June 2, 2025].

[42] C.Cartis, J. Fiala, B.Marteau, andL. Roberts, Improving the
flexibility and robustness of model-based derivative-free
optimization solvers, ACM Trans. Math. Softw. 45, 1
(2019).

[43] C. Cartis, L. Roberts, and O. Sheridan-Methven, Escaping
local minima with local derivative-free methods: A numeri-
cal investigation, Optimization 71, 2343 (2021).

[44] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
Optuna: A next-generation hyperparameter optimization
framework, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining (2019), pp. 2623–2631, 10.1145/3292500.3330701.

[45] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
Algorithms for hyper-parameter optimization, in Proceed-
ings of the 24th International Conference on Neural
Information Processing Systems (2011), pp. 2546–2554,
https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[46] J. Bergstra, D. Yamins, and D. Cox, Making a science of
model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures, in Proceedings of the
30th International Conference on Machine Learning,
Atlanta, Georgia (2013), pp. 115–123, https://proceedings
.mlr.press/v28/bergstra13.html.

BATCH SPACING OPTIMIZATION BY … PHYS. REV. ACCEL. BEAMS 28, 094603 (2025)

094603-13

https://arXiv.org/abs/1707.06347
https://arXiv.org/abs/1707.06347
https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html
https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html
https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html
https://sb3-contrib.readthedocs.io/en/master/modules/ppo_recurrent.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://cern.ch/madx
https://cern.ch/madx
https://doi.org/10.1145/3338517
https://doi.org/10.1145/3338517
https://doi.org/10.1080/02331934.2021.1883015
https://doi.org/10.1145/3292500.3330701
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html

